
Empirical Evaluation of Model-Based Performance
Prediction Methods in Software Development

Heiko Koziolek and Viktoria Firus

Graduate School Trustsoft�,
Software Engineering Group,

University of Oldenburg, Germany
(Fax ++49 441 798 2196)

{heiko.koziolek, viktoria.firus}@informatik.uni-oldenburg.de

Abstract. Predicting the performance of software architectures during early de-
sign stages is an active field of research in software engineering. It is expected
that accurate predictions minimize the risk of performance problems in software
systems by a great extent. This would improve quality and save development time
and costs of subsequent code fixings. Although a lot of different methods have
been proposed, none of them have gained widespread application in practice.
In this paper we describe the evaluation and comparison of three approaches for
early performance predictions (Software Performance Engineering (SPE), Capac-
ity Planning (CP) and umlPSI). We conducted an experiment with 31 computer
science students. Our results show that SPE and CP are suited for supporting
performance design decisions in our scenario. CP is also able to validate perfor-
mance goals as stated in requirement documents under certain conditions. We
found that SPE and CP are matured, yet lack the proper tool support that would
ease their application in practice.

1 Introduction

One of the most important non-functional quality characteristics of a software system
is its performance and related to that its scalability. In a software engineering context,
performance is defined as the timing behaviour of a system expressed through quality
attributes like response time, throughput or reaction time.

To achieve high performance, an information system not only has to rely on suffi-
cient hardware (like fast processors, large memory and fast network connections), it also
has to be implemented with efficient software. On a low abstraction level the program
code must be optimized using fast algorithms, which utilise the hardware effectively.
On a higher abstraction level the software architecture has to be designed carefully to
avoid performance-limiting bottlenecks.

However a thorough architectural evaluation of performance properties is still un-
derestimated and often neglected in the software industry today. Developers usually
follow a ”fix-it-later”-approach [14] when it comes to performance and shift the perfor-
mance analysis to late development stages. This approach ignores the fact that a large

� This work is supported by the German Research Foundation (DFG), grant GRK 1076/1

R. Reussner et al. (Eds.): QoSA-SOQUA 2005, LNCS 3712, pp. 188–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Empirical Evaluation of Model-Based Performance Prediction Methods 189

number of performance problems are simply the result of a badly designed software ar-
chitecture. If such problems occur in an implemented system, most often it will not be
sufficient to fix small code areas. Instead, the whole architecture has to be redesigned,
which might be very expensive if possible at all.

Countering the ”fix-it-later”-approach, the performance prediction for software ar-
chitectures is an active research area today. Over the course of the last decade a large
number of methods has been developed to analyse the performance during early de-
velopment cycles of a software system [2]. Most of the methods try to exploit design
documents of software systems (e.g. described in the UML), let the performance an-
alyst add performance relevant information (like expected calculation times, number
of users) and automatically construct performance models. These models are able to
produce performance predictions without the need for an actual implementation of the
architecture.

The goal of the methods is not to predict exact response times and throughput fig-
ures of an architecture, which is hardly possible during early design stages when lots of
details are still unknown. Instead, performance goals negotiated with the customers of a
system, which are stated in requirements documents, shall be validated. Such goals can
be maximum response times for specific use cases or minimal throughput numbers for
the overall system. The methods only have to ensure that these upper or lower bounds
are met, they do not have to predict precise response times and throughput numbers.
Furthermore the methods shall support design decisions. If developers identify several
different design alternatives with equal functionality during the design phase, they can
apply the methods on these alternatives to determine the differences between them re-
garding the performance. The exact absolute values for each alternative are not needed
to support the decision for one alternative, only the relative differences of the alterna-
tives are relevant and can be predicted by the methods.

None of the performance prediction methods has gained widespread application
in the software industry. Most of the methods have not been tested on large software
systems but only on small examples often created by the authors of the methods them-
selves. So their practical usefulness is still unknown.

On this account we conducted an empirical experiment, in which we analysed and
compared three performance prediction methods for software architectures. Similar
work has been done by Balsamo et. al. [3], who compare an analytical and a simulation-
based method in a case study. Yet they do not compare the prediction of the methods
with measurements from an implementation as we have done in our experiment. Such
a comparison of prediction and measurement has been done by Gorton et. al. [6] for a
software architecture based on Enterprise Java Beans, but only with a single method.

We selected three of the more matured performance prediction methods and let 31
computer science students apply the methods on the design documents of an experi-
mental web server. The students had no code to analyse, but were given five design
alternatives from which they should favour one to implement. After the predictions had
been completed we implemented the web server, measured its actual performance and
compared predictions and measurements.

With this experiment we tried to answer the following questions:

190 H. Koziolek and V. Firus

– How precisely can quantitative performance characteristics be predicted with the
methods?

– Do the methods really support the decision for the design alternative with the fastest
implementation?

– How does the application of the methods compare to an unmethodical approach to
performance prediction?

– What are the properties of the methods and where is room for improvement?

While the first three questions are suited to create and test hypothesises, the last question
has a more explorative character. Because we could not gather enough data points for a
hypothesis test, the results are shown as descriptive statistics.

The contribution of this paper is an evaluation and comparison of three different per-
formance prediction methods within an empirical study. The usefulness and the deficits
of these methods are analysed for the purpose of creating a tighter integration of per-
formance analysis and software engineering. Additionally, a generic method for the
evaluation of performance prediction methods has been developed and can possibly be
applied to other methods.

The paper is organised as follows. In the next section we shortly describe the three
methods under analysis and reason why we have selected them. Section 3 explains our
methodical approach and how we conducted the experiment with the computer science
students. The results and the answers to our research questions are presented in section
4, while section 5 discusses the validity and limitations of our experiment.

2 Analysed Methods

The following three performance prediction methods were selected for their maturity,
their use of standard notations (like UML and Queueing Networks) and the availabil-
ity of software tools. The Software Performance Engineering (SPE) method has been
developed by Smith and Williams and recently extended to include UML-models [14].
Capacity Planning (CP) as described by Menasce and Almeida [11,10] is an approach
for the proper sizing of information systems and can also be applied during early devel-
opment cycles. To include a simulation-based method we added one recent approach by
Marzolla and Balsamo [8]. They have developed a tool called UML Performance Sim-
ulator (umlPSI), which allows the simulation of performance annotated UML models.

SPE includes three steps for performance modelling and analysis. First, the software
architect models the system based on the requirements with UML. In the second step
performance-critical scenarios of the UML-model are selected and a so-called software
execution model is created for each scenario. These models include the control flow
for one scenario and are annotated with the scenario’s performance characteristics (e.g.
expected duration of a step, number of loop iterations, probabilities for alternative ways
through the control flow etc.). In a third step the so-called system execution model is
created, which contains information about the underlying hardware resources (e.g. pro-
cessors, network connections, etc.). In the software tool SPE-ED [13] the developer can
define the request arrival rate for one scenario and let the tool analyse the scenario. For
the system execution model the tool creates queueing networks and connects them with
the software execution model. The calculated performance attributes for a scenario are

Empirical Evaluation of Model-Based Performance Prediction Methods 191

response times, throughput and resource utilisation and are reinserted into the control
diagrams of the software execution model.

CP is usually used for the performance analysis and prediction for already imple-
mented systems. This method is based to a large extent on the queueing network theory.
A developer starts with an informal description of the system’s architecture, and tries
to collect as much performance information as possible through system monitoring and
testing. Afterwards a queueing network for the system is constructed and its input val-
ues are determined with the performance information collected before. With various
software tools [9] the queueing network can be solved and the results may be validated.
By changing the input parameters, predictions can be made for the system, e.g. when
the number of users increases or other hardware resources are used. Capacity Planning
yields response times, throughput, resource utilisation and queue length.

Performance-annotated UML diagrams in the XMI file format are the input for the
umlPSI tool. The annotations are made according to the UML Profile for Schedulabil-
ity, Performance and Time [12], and can be entered in regular UML modelling tools.
They consist of arrival rates of requests, duration times for activities, the speed of hard-
ware resources etc. umlPSI automatically generates an event-based simulation from
these UML-diagrams and executes it. The results of the simulation, like response times
for scenarios or utilisation of certain hardware devices, are reported back into special
result attributes of the UML profile contained in the XMI-files. The developer may then
re-import the diagrams into his UML-tool and directly identify performance problems
within his architecture.

3 Conduction of the Empirical Evaluation

3.1 Methodical Approach and Participants

To direct our evaluation we applied the Goal-Question-Metric approach [4]. First we
defined our goal (the evaluation of performance prediction methods) and then we raised
questions (see introduction) to reach this goal. We defined metrics for the answers to
our questions, which will be explained in section four.

To collect data for our metrics we favoured the conduction of a controlled ex-
periment, which results are most reliable of all empirical methods. Other methods are
case studies, field studies, meta studies or surveys [17], but their expected results are
usually not as reliable as in an controlled experiment. In a controlled experiment a
researcher tries to control every factor that might influence the result, except for the
factor he wants to study. In our study the only varying factor is the performance pre-
diction method itself. This means that all other data like the qualification of the testers,
the input for the methods, the hardware/software environment etc. have to be constant
when applying each method. To control the qualification of the testers we decided to
let a group of computer science students apply the methods, such that the results of
our study are more representative for all developers and not bound to some individual
qualification. We also tried to keep the inputs constant for every method and controlled
the environment in which the students did their predictions.

The participants were 31 computer science students, who had all passed their in-
termediate diploma and had at least two years of experience in the field of computer

192 H. Koziolek and V. Firus

science. All of them had participated in a software project lasting one semester and
were not new to software engineering and UML models. The number of participants
was too low to perform hypothesis testing, because the amount of data points was too
low for certain statistical methods. Nevertheless, by having multiple students apply the
methods, we were able to reduce distortions to results due to exceptional individual
performances.

The actual study consisted of three steps. First we trained the students in the me-
thods, then we conducted the experiment, and finally we implemented the web server
and measured its performance.

3.2 Training Session

Each method was introduced in a two-hour session to 24 students with help of the re-
spective literature. Seven students did not participate in the training sessions and formed
an untrained control group. After each session, a paper exercise was given to the stu-
dents, who had to return the solutions within one week. By solving the paper exercise,
the students had to experiment with the methods and tools on their own and were pre-
pared for the later experiment.

From this pretest we could also retrieve some information on how to design the
tasks of the later experiment. After the sessions the 24 trained students were separated
into three groups. The participants of each group had to apply one of the methods. The
disposition of the students into groups was based on the results of the paper exercises
making it possible to have three homogeneous groups with a comparable qualification
range.

3.3 Conduction of the Experiment

For the experiment we prepared UML-diagrams (component, sequence and deploy-
ment) of an experimental web server, which has been developed in our research group.
This multi-threaded server is written in C#, can be accessed with the HTTP-protocol,
and is also able to generate HTML-pages from the contents of a database.

To simulate the typical application of the methods, we also provided the students
with five different, performance-optimizing design alternatives. Out of these alterna-
tives the one with the best performance should be selected. The alternatives consisted
of

– Alternative 1a: a cache for static HTML-pages
– Alternative 1b: a cache for dynamically generated HTML-pages
– Alternative 2: a single-threaded version of the server
– Alternative 3: application of a compression-algorithm before sending HTML-pages
– Alternative 4: clustering of the server on two independent computers

Further Details can be found in [7].
A common usage profile (arrival rate of requests, file sizes of retrieved documents,

distributions of the type of requests) was provided to the students. Additionally, a hard-
ware environment was specified including the bandwidth of the network connections,

Empirical Evaluation of Model-Based Performance Prediction Methods 193

the response time for database accesses and the speed for certain calculations. The stu-
dents were asked to predict the response time for a given scenario for each design alter-
native. The scenario was modelled as an UML sequence diagram, showing the control
flow through the components of the web server when the user requested a HTML-page
that was generated with data from a database connected with the web server. In addition
to the end-to-end response time as perceived by the user the students should also predict
the utilisation of the involved resources like processors and network connections. Based
on these results the students made their recommendation for one of the alternatives.

For the CP-method a workload trace from a prototype of the web server was handed
out to the students, so that they were able to perform the necessary calculations. How-
ever, none of the groups was provided with any code of the server, preventing the pos-
sibility of running tests during the experiment.

The experiment was carried out in a computer lab at the university. Each student
performed his/her predictions within two hours. It was assured that each student applied
the methods single-handedly and did not influence other students.

3.4 Implementation and Measurement

After the experiment the web server was implemented for each of the five design al-
ternatives. The hardware environment of the experiment’s task was reproduced and the
proposed usage profile was simulated via testing tools. We measured the response time
of each design alternative and monitored the resource utilisation with tools from the op-
erating system. To exclude side effects during the testing session, we shut down back-
ground processes and repeated the requests on the web server over a 5-minute time
interval for each alternative respectively. Finally, we used the averaged results of these
measurements for the comparison with the predictions that is reported below.

4 Results

As result of the performance analysis for each approach, the response times for the
single alternatives were noted. By the response time we refer to the time needed by the
system for handling a user request from entering the system up to leaving the system.
In the following we define metrics to answer the questions posed and to interpret the
results regarding the goal of the case study. The formally defined metrics can be used
in comparable studies.

4.1 How Precisely Can Quantitative Performance Characteristics Be Predicted
with the Methods?

To answer the question we need a metric indicating the degree of discrepancy between
the forecasted and measured values. For this reason the mean deviation between the
predicted and measured response times in percent and not the Euclidean distance is de-
termined among all alternatives and among all participants who predicted with a certain
approach. Let A be the set of all design alternatives under consideration, n the number
of participants applying the method, rti,j the predicted response time from student i for

194 H. Koziolek and V. Firus

the alternative j and rtmeas,j the measured response time of the implementation of the
alternative j. Then Metric 1 can be specified as follows:

m1 :=
1
|A|

|A|∑

j=1

1
n

n∑

i=1

|rti,j − rtmeas,j |
rtmeas,j

Small values for Metric 1 show a good suitability of the method for the evaluation of
quantitative performance requirements.

In the following we present the predicted response times for each approach. The
times are sorted according to design alternatives and participants, and are shown in
a table using bar charts. In the second last column the actual measurements of the
web server can be found, which enables the comparison with the predictions. The
last column contains the mean deviation of the forecasts from the measurements in
percent for each alternative determined among all participants. The bar chart of the
last column was generated automatically and does not mean the absolute response
times.

In figure 1 the response times forecasted with the SPE-approach are presented. With
this approach several participants did not succeed in computing a response time for de-
sign alternative 2 (single-threaded version of the server) since the SPE-approach does
not support modelling multiple threads. The deviations in the forecasts of individual
participants are based on the fact that the SPE method needs input values, which are
not present during the design phase of the system development. These values must be
gathered from comparable systems or prototypes or have to be estimated on the basis of
developers’ experiences. In this experiment the input values were estimated by the par-
ticipants. This explains the large deviations of the predicted values from the measure-
ments. Nevertheless, significant patterns concerning the performance behaviour of the
single design alternatives are observable.The Metric 1 computed for the SPE approach

Fig. 1. Predicted end-to-end user times, SPE method

Empirical Evaluation of Model-Based Performance Prediction Methods 195

amounts to 0,3649. That is, the forecasts deviate on the average over all participants and
design alternatives by 36% from the measurements.

For the CP-approach the results of only 6 participants were gathered (figure 2)
as two of the students were not able to finish their predictions within the available
time. Just as with the SPE method, most participants did not succeed in modelling

Fig. 2. Predicted end-to-end user times, CP method

alternative 2 and provided no results. With the CP-approach the forecasts of the par-
ticipants, except alternative 3, differ very slightly from the measurement of the im-
plementations. That is because of the fact that the method uses data measured on an
available system. With alternative 3 a compression rate for delivered files had to be
estimated, therefore noticeable deviations in the values arise. Metric 1 computed for
the CP-approach amounts to 0,1484. By about 15% deviation of prediction from mea-
surements the CP method suites well for predicting future performance for existing
systems.

Response times predicted with the umlPSI-approach are presented in figure 3. Apart
from the infeasibility of modelling threads, the relatively large variation of obtained re-
sults is remarkable. With this approach, input data based on estimation is not separated
into software and hardware resources, as it is the case with the SPE approach. In ad-
dition, the umlPSI approach relies on less input data, which makes the forecasts more
inaccurate. The mean deviation between the predicted and measured response times
computed via Metric 1 is here over 500%.

To answer question 1 it can be stated that the CP approach is suitable for valida-
tion of performance requirements because of its comparatively high accuracy with the
forecast of the absolute response times. However, the CP method requires measured re-
sponse times of an existing system, therefore it can be only used for new developments
in later phases of the software development.

196 H. Koziolek and V. Firus

Fig. 3. Predicted end-to-end user times, umlPSI method

4.2 Do the Methods Really Support the Decision for the Design Alternative with
the Fastest Implementation?

On the basis of the predicted response times the design alternatives can be ordered. The
question is, how authentic this order is, if compared with performance of the imple-
mentation of alternatives. We need a metric indicating the number of wrong decisions
suggested by a certain method.

For this reason first a ranking for the design alternatives is set up on the basis of the
measured response times. Let A be the set of all design alternatives under consideration.
We define a mapping

Posmeas : A −→ {1, ..., |A|}
with Pos(AlternativeA) ≤ Pos(AlternativeB) for the response time of the alterna-
tive B being not less than the one of the alternative A. In the same manner the design
alternatives are arranged for each participant into a ranking according to their predicted
response times. The mapping Pospredi arranges similarly to each alternative its place
in the ranking according to the response times predicted by participant i.

In the next step we want to calculate, how many positions the measurement-based
ranking differs from the prediction-based ranking. Since we do not want to take into
account place permutations in cases of insignificant differences in response times we
divide the alternatives according their measured times into classes applying a distance-
based clustering algorithm [1]. In this way alternatives with very close response times
are regarded equivalent and belong to the same class. The monotonically increasing
mapping Class : Posmeas(A) −→ {∞, ..., |C��∫∫�∫ |} assigns each position of the
measurement-based ranking to the class of the associated design alternative.

Subsequently we define

Displacementi(Alt) := |Class(Pospredi(Alt)) − Class(Posmeas(Alt))|.

Empirical Evaluation of Model-Based Performance Prediction Methods 197

This formula indicates for the participant i the number of place discrepancies between
his predicted ranking of design alternative Alt and the measurement-based ranking of
this alternative if the rank positions belong to different clusters. Metric 2 is defined as
follows:

m2 :=
1
n

n∑

i=1

|A|∑

j=1

Displacementi(Altj),

with n being the number of participants predicting with a certain method. The smaller
the value of the metric m2 the less false placements were obtained by ordering the
alternatives according to timing behaviour.

Figure 4 shows the comparison of the measured and the predicted rank lists of our
experiment. On the basis of measurements the alternative 3 was assigned to the class 1

Fig. 4. Ranking of design alternatives

and other alternatives to the class 2, because the response time of alternative 3 clearly
differs from others. With the SPE and CP approaches there are only two ”‘incorrect”’
placements in the prediction-based ranking of one participant in each case. Other place
permutations among the alternatives 1a, 1b, 2 and 4 occur within a cluster and therefore
do not taken into account. With the umlPSI approach more often an alternative of the
”‘slower”’ class was forecasted being the fastest, which results in the notably higher
value for Metric 2.

As answer to question 2 it can be stated that both the SPE and CP approach are
well suited for supporting the selection of the best design alternative concerning timing
behaviour.

4.3 How Does the Application of the Methods Compare to an Unmethodical
Approach to Performance Prediction?

The tasks of the experiment were additionally given to seven members of the control
group, who did not take part in the tutorials. Doing so we wanted to find out whether the
intuitive evaluation of design alternatives leads to different decisions than applying one
of the methods. The members of the control group did no ranking of the alternatives but
selected the best one on their own opinion. Four of the seven members of the control

198 H. Koziolek and V. Firus

group preferred the alternative 1b (dynamic cache), only three participants picked al-
ternative 3 (compression). Thus, the larger part of the control group took an alternative,
which had the best response times in only 12% of the method-supported predictions.
Although the sample of seven participants is very small, this result at least implies that
analysing the design documents does not lead necessarily to the decision for design
alternative 3 and that our experiment’s setup was valid.

4.4 What Are the Properties of the Methods and Where is Room for
Improvement?

We grouped the properties of the methods into four different subsections: expressive-
ness, tool support, domain compatibility and process integration, and report our experi-
ences with them during the experiment.

Expressiveness. The SPE method has a quite intuitive separation of a software and a
system model, which allows changing hardware and software independently for a quick
analysis of different designs. The underlying queueing networks are encapsulated by the
method’s tool and are not of the developers’ concern. One scenario may be modelled
over multiple levels of control flow making it easy to model complex situations. Multi-
ple scenarios on one resource may be evaluated via simulation directly within the tool.
Although it is possible to model quite complex systems, the students were not able to
model multiple threads within one process. An advanced system model for different
queueing disciplines and the inclusion of passive resources has been proposed [15],
yet is not implemented in the tool. The SPE method allowed the students to make pre-
dictions on the performance of the architecture with the fewest input data of all three
analysed methods. Thus it is suitable for application during early development cycles
when details of the complete architecture are still unknown.

Other than the SPE method, in CP only a system model is used for the analysis. No
explicit software model is included. The workload of a system is characterised by traces
of requests and the output of monitoring tools. It is necessary to have at least a proto-
type of the new architecture to collect this data. In our experiment we had to include a
workload-trace of a prototype of the web server into the design documents, so that the
students could apply the method. Many different queueing networks may be modelled,
for example with multiple queues before one server or the blocking of resources. This
allows a lot of real-life situations to be analysed. Yet software tools are missing for
some of these networks and the analysis has to be done manually in this case. Like in
SPE the students had difficulties modelling multiple threads. A hierarchical structuring
of complex queueing networks is not provided. Because this method relies on measured
performance data, it is better suited for performance planning when extending existing
systems.

The expressiveness of the umlPSI approach is as powerful as UML diagrams (use-
case-, activity- and deployment-diagrams) and the UML profile used. Using UML was
intuitive for the students, who had learned this modelling language in a course about
software engineering. Some students complained that the modelling of hardware re-
sources with deployment diagrams was not expressive enough because the UML Per-
formance Profile only allows the definition of a speed-factor to differentiate resources.
Multiple threads could be modelled through a passive resource with a pool of threads.

Empirical Evaluation of Model-Based Performance Prediction Methods 199

The generated simulation is more powerful than the analysis models of the previous
two methods. For example, it allows arbitrary distributions of incoming requests, while
queueing networks are bound to an exponential distribution.

Tool support. The SPE-method comes with the tool SPE-ED (Software Performance
Engineering EDitor) for Windows, which can be downloaded in a demo version from
the authors’ website [13]. The full version for commercial use has to be purchased,
yet a price is not provided. SPE-ED has been developed several years ago and the user
interface is not up to the latest standards. For example, there is no drag and drop and
students complained that the graphical modelling is unintuitive and quite different from
similar tools. There is no integration with other modelling tools, although an export
function to a XML-based file format has been proposed, but is not implemented yet
[16]. Having manually entered software execution graphs the performance modeller
is able to do a quick analysis with the tool highlighting expected bottlenecks of his
architecture. The tool is stable and the students hardly reported any crashes. A problem
of the tool is that it is not possible to feed the performance results directly back into the
software model (e.g. in UML) and that software model and performance model have
to be maintained separately. Overall, the tool appears useful for serious performance
modelling and is the most matured of the analysed tools.

Although several tools exist to solve queueing networks, we decided for the CP-
method to use the spreadsheets provided by the authors, which can be downloaded
free of charge from their website [9]. There are several versions of the spreadsheets,
each one for a different type of queueing network. Spreadsheets are also available for
workload clustering as described in the book. The spreadsheets for queueing networks
let the user put in the type and number of resources, the expected calculation time on
each resource and the arrival rate of incoming requests. They output response times,
resource utilizations, queue length and throughput, but do not visualise the results. A
graphical visualisation would have been useful because the output may consist of a large
amount of numbers, which have to be carefully analysed. Some students reported that
they had trouble interpreting the results. Because the queueing networks do not contain
an explicit software model and are resource-oriented, reporting back the results into the
software model is impossible. The spreadsheets are appropriate for their actual purpose,
which is capacity planning for existing information systems. However their usefulness
is limited when analysing large software architectures.

As mentioned earlier, an UML modelling tool is necessary before using the free
umlPSI Linux-tool, because umlPSI only generates and executes simulations out of
XMI-files. Like the authors we used Poseidon for modelling and annotating UML-
diagrams in our experiment. umlPSI in its current implementation is bound to a spe-
cific version of Poseidon, since it can only process the XMI-dialect generated by this
version properly. The installation of this tool was difficult because it requires some li-
braries which are not available on every Linux distribution. Most of the students did
not manage to install and run umlPSI and only submitted their annotated UML-models
exported from Poseidon. Generation and execution of the simulation was also difficult
because the tool produced incomprehensible error messages if the XMI-files contained
syntax errors, which occurred several times during our testing. After the simulation is
executed properly the tool outputs a result table and also reported the results back into

200 H. Koziolek and V. Firus

the XMI-files, which could be reimported to Poseidon. There the students were able to
inspect bottlenecks and make adjustments to their architectures. It would be practical if
the tool was available as a plugin for a modelling tool and had not to be started exter-
nally. Overall umlPSI is intended as a proof-of-concept implementation for the method
and cannot been seen as a tool ready for industrial use.

Domain applicability. The application domain of the authors of the SPE-method are
distributed systems and especially web applications. Their documentation contains sev-
eral examples of systems providing services to the web. They also documented the
application of the SPE-method to embedded real-time systems. The SPE approach is
very flexible and can be applied to lots of different contexts.

Like SPE, CP is also developed with the focus of web applications and client/server
systems as analysis subjects. The authors have written five different books about the
topic with varying emphasises (e.g. Web Server, E-Business, Client/Server).

The umlPSI tool so far is able to analyse use-case-, activity-, and deployment-
diagrams and is therefore bound to the modelling possibilities of these three diagram
types. For example the inclusion of component-diagrams is not possible. The authors
tested this method with examples of small web applications.

Process integration. For the SPE method a well-documented process consisting of sev-
eral steps is available. Although it is originally designed for the application during the
design phase of a waterfall model during software development, the authors also show,
that the method can be easily embedded into iterative models like the spiral model or
the unified process.

CP contains a process model, but it has to be adopted individually depending on the
system under analysis. It is best suited to be applied during implementation, testing or
evolution stages of a software system.

The umlPSI tool can be used every time the developers are concerned with UML
modelling, mostly during early stages of the development. It is not bound to a specific
process model.

5 Validity of the Experiment

Several limitations affect the validity of our results. We discuss the internal and external
validity of our experiment.

The internal validity is the degree, to which every relevant interfering variable could
be controlled. This includes the degree to which the results of the experiment are indeed
attributed to the properties of the performance prediction methods and not bound to
mistakes in our experimental set-up.

One interfering variable we could not control was the input to the methods. For
the SPE-approach and the umlPSI-approach the students had to base their predictions
on estimated values. Instead, for the CP-approach we included a workload trace with
measured values into the experimental task, because this is common when applying this
approach.

The disposition of the students into each group was based on the results of their
exercise papers. This way we controlled the possibility of inhomogeneous groups with
deviating qualifications.

Empirical Evaluation of Model-Based Performance Prediction Methods 201

The external validity is the degree, to which the results of the experiment are valid
in other situations than the one analysed here. This especially concerns the participants
and the analysed subject.

The participants in our experiment were students and we could not include practi-
tioners with more experience. However, due to the training session, every student had
a similar knowledge about the performance prediction methods. This way, past experi-
ences of the participants did not distort the results, which would have been possible if
practitioners had been included into the experiment.

The number of students was limited to eight for each method, so a statistical hypoth-
esis test was not possible due to the limited available data points. However, individual
exceptions in student performance could be detected in principle. By this the influence
of individual performance was controllable.

The students analysed a small architecture, the scalability of the methods to larger
architectures is unknown. Our implementation of the web server is only one possible
implementation, the performance measurements of other implementations of the same
design might differ.

We analysed only three methods, although more than 20 approaches are known [3].
The validity of our experimental set-up applied to other methods is unknown.

6 Conclusions

In this paper we compared three different methods for the early performance analysis
of software systems. A group of students applied the methods on design documents and
made performance predictions for the architecture of a web server. After implementing
the web server we were able to compare predictions with actual measurements.

The SPE method was appropriate to support design decisions. Yet the validation
of performance goals was hardly possible because the predictions relied on students’
estimations and a satisfying precision could not be achieved. The method is especially
suited for early, explorative predictions because it is able to compute results with only
few inputs. A better integration of this method into common modelling tools would be
of practical interest.

CP delivered the most precise predictions, but relied on a workload trace of the web
server taken from a prototype. Thus, the method is well suited for extending existing
system and also able to validate performance goals. But the use for early performance
predictions of new architectures is limited.

umlPSI might be most convenient for developers because it relies on UML models
and does an automatic transformation of software models to performance simulations.
However the simulation was more time-consuming than the analysis of the other meth-
ods and the tool proved to be error-prone. The umlPSI method can be used during early
development cycles, yet the precision of the performance results was the worst in our
experiment.

Future work in this area includes the conduction of a field study in an industrial en-
vironment possibly with a large software architecture. Other methods, especially those
for component based systems [5], will also be evaluated.

202 H. Koziolek and V. Firus

Acknowledgements. We would like to thank Yvette Teiken for implementing the web
server, members of the Palladio research group for fruitful discussions and all students,
who volunteered to participate in our experiment.

References

1. M.R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
2. S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni. Model-based performance prediction

in software development: A survey. IEEE Transactions on Software Engineering, 30(5):295–
310, May 2004.

3. S. Balsamo, M. Marzolla, A. DiMarco, and P. Inverardi. Experimenting different software ar-
chitectures performance techniques: A case study. In Proceedings of the Fourth International
Workshop on Software and Performance, pages 115–119. ACM Press, 2004.

4. V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric approach. Encyclo-
pedia of Software Engineering - 2 Volume Set, pages 528–532, 1994.

5. A. Bertolino and R. Mirandola. Cb-spe tool: Putting component-based performance engi-
neering into practice. In Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C.
Wallnau, editors, Component-Based Software Engineering, 7th International Symposium,
CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings, volume 3054 of Lecture Notes
in Computer Science, pages 233–248. Springer, 2004.

6. I. Gorton and A. Liu. Performance evaluation of alternative component architectures for
enterprise javabean applications. IEEE Internet Computing, 7(3):18–23, 2003.

7. H. Koziolek. Empirische bewertung von performance-analyseverfahren fr software-
architekturen. Diploma thesis, University of Oldenburg, Faculty II, Department of Com-
puting Science, Okt. 2004.

8. M. Marzolla. Simulation-Based Performance Modeling of UML Software Architectures. PhD
thesis, Universit‘a Ca Foscari di Venezia, 2004.

9. D. A. Menasc, V. A. F. Almeida, and L. W. Dowdy. Download files for
the book: Performance by design: computer capacity planning by example.
http://cs.gmu.edu/∼menasce/perfbyd/efiles.html, 2004.

10. D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy. Performance by Design. Prentice Hall,
2004.

11. D. A. Menasce and V. A.F. Almeida. Capacity Planning for Web Services. Prentice-Hall,
2002.

12. Object Management Group OMG. Uml profile for schedulability, performance and time.
http://www.omg.org/cgi-bin/doc?formal/2003-09-01, 2003.

13. C. U. Smith. Speed: The software performance engineering (spe) tool.
http://www.perfeng.com/sped.htm, Jan 2000.

14. C. U. Smith. Performance Solutions: A Practical Guide To Creating Responsive, Scalable
Software. Addison-Wesley, 2002.

15. C. U. Smith. Spe-ed user guide. http://www.perfeng.com/papers/manual.
zip, 2003.

16. C. U. Smith and C. M. Llad. Performance model interchange format (pmif 2.0): Xml defi-
nition and implementation. Technical report, Performance Engineering Services, Universitat
Illes Balears, 2004.

17. C. Wohling, P. Runeson, M. Hst, M.C. Ohlsson, B. Regnell, and A. Wesslen. Experimentation
in Software Engineering – An Introduction. Kluwer Academic Publishers, 2000.

http://cs.gmu.edu/~menasce/perfbyd/efiles.html
http://www.omg.org/cgi-bin/doc?formal/2003-09-01
http://www.perfeng.com/sped.htm
http://www.perfeng.com/papers/manual.zip
http://www.perfeng.com/papers/manual.zip

	Introduction
	Analysed Methods
	Conduction of the Empirical Evaluation
	Methodical Approach and Participants
	Training Session
	Conduction of the Experiment
	Implementation and Measurement

	Results
	How Precisely Can Quantitative Performance Characteristics Be Predicted with the Methods?
	Do the Methods Really Support the Decision for the Design Alternative with the Fastest Implementation?
	How Does the Application of the Methods Compare to an Unmethodical Approach to Performance Prediction?
	What Are the Properties of the Methods and Where is Room for Improvement?

	Validity of the Experiment
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

