
Parameter Dependent Performance Specifications
of Software Components

Heiko Koziolek, Jens Happe, Steffen Becker

Graduate School TrustsoftÆ
University of Oldenburg, Germany and
Chair for Software Design and Quality

University of Karlsruhe, Germanytkoziolek | happe | sbecker u@ipd.uka.de
Abstract. Performance predictions based on design documents aim at improv-
ing the quality of software architectures. In component-based architectures, it is
difficult to specify the performance of individual components, because it depends
on the deployment context of a component, which may be unknown to its devel-
opers. The way components are used influences the perceived performance, but
most performance prediction approaches neglect this influence. In this paper, we
present a specification notation based on annotated UML diagrams to explicitly
model the influence of parameters on the performance of a software component.
The UML specifications are transformed into a stochastical model that allows the
prediction of response times as distribution functions. Furthermore, we report on
a case study performed on an online store. The results indicate that more accurate
predictions could be obtained with the newly introduced specification and that
the method was able to support a design decision on the architectural level in our
scenario.

1 Introduction

Performance is an important quality attribute of a softwarearchitecture. It can by char-
acterised by metrics such as response time, throughput, andresource utilisation. In
many existing systems, the reason for bad performance is a poorly designed software
architecture [15]. Performance predictions based on architectural descriptions of a soft-
ware system can be performed before the implementation starts, thereby possibly re-
ducing costs for subsequent refactorings to fix performanceproblems. It is the hope
that such early analyses support the decision for design alternatives and reduce the risk
of having to redesign the architecture after performance problems have been diagnosed
in the implementation.

Component-based software architectures are well-suited for early performance pre-
dictions, if information needed for performance evaluation has been specified for each
component by its developers. As component developers cannot know in which context
their components will be deployed [8], these performance specifications should be pa-
rameterisable for different hardware resources, requiredservices, and usage contexts to
allow accurate predictions [3].Æ This work is supported by the German Research Foundation (DFG), grant GRK 1076/1



In many performance prediction approaches, the component specifications are pa-
rameterisable for different usage contexts only by allowing to specify probabilities for
the possible requests to the component’s provided services(e.g., [4, 17]). It is often ne-
glected that component services can be called with different parameters, and that these
parameter can have a significant influence on the performanceof the architecture.

The dependencies between parameters of a component serviceand its performance
have to be made explicit bycomponent developersin the specifications to allow accu-
rate performance predictions.System architectscan then adjust performance predictions
to the expected usage profile. In some cases, the dependencies between parameters and
performance might be intricate and hard to specify, for example if a service first per-
forms complex computations on a parameter value an then changes its performance
depending on the results. Furthermore, parameters might becomplex objects or even
other components, for which a reasonable specification is difficult. However, in this
paper a first step to integrating parameters into performance specifications of software
components shall be taken. Parameters considered here can be of a primitive or com-
posite data type.

A notation based on extensions to the UML SPT profile [12] is provided to specify
the dependencies between parameters and performance. Thisprofile allows annotating
UML diagrams with performance-related information. As many existing performance
approaches already use this profile (e.g., [4, 11]), they could also benefit from the ex-
tensions presented in this paper. Tools evaluating annotated UML diagrams could be
changed with low effort to incorporate the extensions. Another advantage of the UML-
based notation is the familiarity of the developers, who often already know the UML
language. However, the concepts underlying the approach presented here are not bound
to the SPT profile and might be carried over to other notations(e.g., future performance
related profiles).

The contribution of this paper is a modelling notation for parameter dependent per-
formance specifications for software components and an according analytical perfor-
mance prediction model. Unlike most performance prediction models, we explicitly
incorporate the influence of parameters on resource demand as well as on the usage of
external services in our predictions. A case study, in whichresponse times for a de-
sign alternative of a component-based software architecture are predicted, is provided
to illustrate the benefits of this approach.

The paper is organised as follows: Section 2 describes the modelling in our perfor-
mance prediction approach and focuses on parameter dependencies. Section 3 shows
the necessary computations, and Section 4 explicitly liststhe assumptions underlying
the approach. The case study of a performance prediction foran component-based on-
line store is provided in Section 5. Section 6 points out related work, while Section 7
draws conclusions and sketches future work.

2 Modelling Component Performance

Several models from different developer roles are used for the prediction of the per-
formance in a component-based architecture in our approach. The architecture itself is



modelled with a UML component diagram by the system architect. For each compo-
nent, the component developers provide a specification, which will be described with
more detail in the next paragraphs. Components are associated with system resources
by system deployers using UML deployment diagrams. The userbehaviour is modelled
with activity diagrams, in which each action represents theinvocation of an entry-level
component service by a user.

All models are combined and completed by the system architect, who performs the
predictions supported by tools. For this prediction approach, it is intended to use a de-
velopment process model outlined in [9]. In the following paragraphs, component spec-
ifications, needed annotations, parameter characterisations, and modelling of resource
demand are elaborated on.

2.1 Components and Service Effect Specifications

Software components are black-box entities with contractually specified interfaces.
Provided interfaces publish services of the component.Requiredinterfaces specify
which external services are needed by the component. Moreover, in this approach a
component specification contains a so-calledService Effect Specification(SEFF) for
each provided service [13]. It describes how the provided service calls the services
specified in the required interfaces. Here, a service effectspecification is modelled with
UML activity diagrams, where each action represents a call to a required service of
the component. Activity diagrams are better suited for composition than sequence di-
agrams, as each external service call could be modelled withan additional activity di-
agram that is the SEFF of another component. In the example inFig. 1, componentc
provides the servicea and requires the servicesx, y, andz. The service effect specifi-
cation for servicea on the right hand side shows that, upon invocation, servicea first
calls servicex, and then either servicey or z before it finishes execution.

C
provided

<<interface>>
provided

a()

required

<<interface>>
required

x()
y()
z()

x

y

z

<<seff>>
<<component>> a

Fig. 1.ComponentC, Service Effect Specification for Servicea

2.2 Annotations

To predict the performance of components, additional information is required in the
specification, such as transition probabilities on branches, the number of iterations for



each loop, arrival rates of requests, and resource demands (i.e., the time an actions is
expected to execute on a resource). This additional information is included into the
SEFFs by annotations according to the UML SPT profile [12]. Each action and transi-
tion is annotated with the stereotype<<PAstep>>. The tagged values of the profile
(e.g., to specify resource demands, transition probabilities, repetitions of steps etc.) can
be used as described in the profile specification. Two extensions to the SPT profile no-
tation are defined in the following (Tab. 1), to better reflectthe influences of different
usages of the architecture in the model.

Tag Type Multiplicity Domain Attribute Name
PArep PAloopValue[0..*] Step::repetition
PAparamPApar [0..*] Step::parameter

Table 1.Redefined Tags

First, we redefine the tagPArep of the UML SPT profile allowing to either spec-
ify a mean value or to associate percentiles to the number of loop iterations. To ease
the later analysis, loops are always modelled with the tagPArep here. Following the
approach in [10], cycles within the activity diagrams indicated by backward transitions
are not allowed. Loops have to be made explicit whenever theyare used. This can be
done in three ways. First, by annotating an arbitrary behaviour call node with aPArep
tag and taking the called activity as loop body. Second, by using loop nodes provided in
UML 2.0 as basic element. The loop node allows explicit modelling of the loop initial-
ization, the repetition test and the loop body. Third, by using expansion areas in UML
2.0, which specify a set of actions that are executed iteratively on a collection of input
objects. We use loop nodes and expansion areas in our examples later on.

<loopValue> ::= ( <type-modifier>, <integer> )
<type-modifier> ::= ’mean’ | ’percentile’, <real>

Tagged Value Type Definition1: PAloopValue

Second, we define a new tagPAparam to characterise parameters of component
services. The signature of a component’s service specifies formal parameters. However,
for QoS analyses, we need probabilistic characterisationsof the actual parameters that
the formal parameters can be bound on during runtime by the users.

2.3 Parameter Characterisation

Three forms of parameters can be distinguished.Inputparameters are arguments passed
to a provided service of a component.Outputparameters are the return values of these
services.Internal parameters can be global variables or configuration attributes of a



component. All these forms of parameters may have differentinfluences on the perfor-
mance of a component:

– Resource Usage:Parameters can influence the usage of the resources present in
the system executing the component. For example, the time for the execution of a
service that allows uploading files to a server depends on thesize of the files that
are passed as input parameters.

– Control Flow between Components:Service effect specifications describe how
requests to provided services are propagated to other components. The transition
probabilities or number of loop iterations in service effect specifications can depend
on the parameters passed to a service.

– Internal State: Input parameters can be stored as global variables within a com-
ponent, thus becoming internal parameters and altering theinternal state of the
component. Later, they can be used by computations of other provided services of
the components and then influence resource usage or control-flow between compo-
nents.

In the following, we consider primitive types (e.g., boolean, int, short, char) and
composite types (e.g., String, List, Tree, Hash, Object). Other forms of parameters like
streams or pointers are excluded here. It is useful to characterise parameters not only
with constant values but with probability distributions. In the following specification
of the tagPAparam, we allow modelling probabilities distributions over the value, the
subtypes, the number of elements, the byte-size, and the structure of a parameters.

– Value: By providing a probability distribution for the value of a parameter, its in-
put domain is partitioned into multiple subdomains. For example, for an integer-
parameterx the domain can be partitioned into two subdomains withx ¤ 0 and
x ¡ 0 depending on its influence on the performance of the component. The system
architect can then specify a probability for each subdomain.

– Subtypes:Different subtypes can be passed to a service that has specified some
supertype in the signature of a provided service. For example, a generic service
drawing graphical objects might have a different response time depending on the
type of objects passed to it (e.g., simple circle vs. complexpolygon). In this case,
it is useful to specify a probability distribution over the subtypes and to neglect the
value of the parameters.

– Elements:For composite data types, it is more difficult to find subdomains over
the value domain. The performance-influence of collectionslike array, tree, or hash
can sometimes be characterised simply by the number of elements. Thus, it may be
appropriate for such parameters to specify probability distributions over the number
of elements.

– Size:Parameter values might also be passed between different servers thus creating
a communication delay. The delay can best be analysed if thebyte-sizeof the pa-
rameter is specified. To refine the specification a probability distribution for the size
could be specified. Note that modelling the overall size of a parameter is appropri-
ate if the inner structure of the parameter is unknown and thenumber of elements
cannot be determined.



– Structure: Additionally, thestructureof collections (sorted, well-formed, balanced,
etc.) can have an influence on performance (e.g., presorted arrays are usually sorted
quicker than unsorted arrays). Thus, a component developercould specify the be-
haviour of a component’s service depending on the structureof a parameter passed
to it.

For a single parameter, several of these characterisationscould be specified. For
more complex parameters like objects it might be necessary to first decompose them
into more primitive types and then characterise these types. Besides specifying proba-
bility distributions, it may be convenient to specify mean values, constants, minimum
or maximum values for parameters.

To model parameters in SEFFs, object nodes (represented as pins on actions) from
UML 2.0 activity diagrams can be annotated with the newly defined tagPAparam (see
tag definition 2). The string-value for<paramValue> is a representative characterisa-
tion of the subdomain of the value (e.g. ”0  � value  � 10”) or can be used to specify
a constant value (e.g. ”foo”). The integer-value for<paramSize> specifies the num-
ber of bytes of the parameter, while the integer-value for<paramElements>models
the number of elements in a collection. Finally, the string-value of<paramStructure>
can be used to make any statement about the structure of the values in collection (e.g.
”presorted” or ”unsorted”), if it has an impact on performance (e.g. in sort-operations).

<paramStr> ::= ( <property-modifier> )

<property-modifier> ::= <paramValue> | <paramType> | <paramSize> |
<paramElements> | <paramStructure>

<paramValue> ::= ’value’, <valueModifier>, <string>
<paramType> ::= ’type’, <valueModifier>, <string>
<paramSize> ::= ’size’, <probModifier>, <integer>
<paramElements> ::= ’elements’, <probModifier>, <integer>
<paramStructure> ::= ’structure’, <string>

<valueModifier> ::= ’const’ | ’min’ | ’max’ | ’percentile’, <real>
<probModifier> ::= ’mean’ | ’sigma’ | ’kth-mom’, <integer> | ’max’ |

’min’ | ’percentile’, <real>

Tagged Value Type Definition2: PAparam

The dependency between a parameter and resource usage or control flow between
components can be specified by using scalar variables of the tagged value language
(TVL) of the UML SPT profile. The same variable can be used in aPAparam tag and
another tag (e.g.,PAprob, PArep, PAdemand, etc.) to model a dependency.

For example, in Fig. 2, a collection is passed to servicea as parameterP1. The
component developer has specified that the number of loop iterations of the required
servicey is three times the number of elements (”3*$P1elements”, where $P1elements
is a scalar variable of the TVL) of the collection passed to servicea in parameterP1.
Once the system architect specifies the number of elements inthe collections the ex-



pected users will pass to the service, the number of externalcalls is also specified via
the dependency.

In the same example, the type of parameterP2 is integer. The component developer
has specified that, depending on whether values ofP2 are smaller or larger than 100,
either the required servicey or z are called, because the transition probabilities of to
these service depend on the variable specified for the parameter. The transition proba-
bility from x to z is specified as a difference to turn the cumulative percentiles into a
probability.

Furthermore, parameterP3 is a binary large object. The component developer has
specified that servicea takes this parameter and returns parameterP4, which is 100
Bytes larger than parameterP4.

x

y

z

<<SEFF>>

PAprob = $P2perc1

PAprob = $P2perc2-$P2perc1

PArep = ('mean', 3 * $P1elements)

PAparam = ('elements', 'mean', $P1elements)

P4

P1

P2

P3

PAparam = ('value', 'percentile', $P2perc1, 'P2<=100')
PAparam = ('value', 'percentile', $P2perc2, 'P2>100')

PAparam = ('size', 'mean', $P3size)
PAparam = ('size', 'mean', 100 + $P3size)

a

Fig. 2.Annotated Service Effect Specification for Servicea including parameters

Note, that it is only necessary to characterise parameters if they indeed influence the
performance. Most parameters donot change resource usage or alter the control flow
between components, and their characterisation can be omitted. Characterising every
parameter of the services in a complex component-based architecture would require
too much effort and not support performance analysis. What parameters have to be
characterised because of their influence on performance hasto be defined by the com-
ponent developer. So far, this task has to be done manually. However, it is conceivable
to develop tools for the reverse-engineering of existing components to help component
developers in obtaining the necessary specifications in a semi-automatic way. This is
part of our future work.

3 Computing Component Performance

To calculate the response time for a service invocation, theresource demand of the
service itself and the resource demands of required services have to be added. Resource
demands are specified as probability mass functions (PMF) inour approach for a more
refined modelling, and the necessary computations for combining these functions are
described in the following. More detailed description of the computations can be found
in [7, 10].



To conduct the computations, first the annotated activity diagrams are transformed
into stochastic regular expressions, which are described in [10]. The mapping is straight-
forward: sequential executions are mapped to sequential expressions, control flow bran-
ches are mapped to alternative expression, and loops are mapped to single expressions
with a distributions function for the number of iterations.The PMFs modelling the
resource demand are annotated to each expression. So far, forks and join in activity
diagrams are not supported by this approach. The abstract syntax tree of the result-
ing stochastic regular expressions is then traversed and the following computations are
performed for each control flow primitive.

Sequence:The PMF for successive service invocations can be computed as the convo-
lution of the single PMFs:

xR1�R2
pnq � xR1

f xR2
rns

Alternative: The PMF for a branch in the control flow can be computed as the sum of
the PMF weighted by the transition probabilities:

xR1�R2
pnq � p1xR1

rns � p2xR2
rns (average case)

Loop: As we have also specified a PMF for the number of loop iterations with the
PArep tag, the random variable for the resource demand of a loop is (lpnq is the PMF
for the number of loop iterations):

XRl � $'''&'''%XR with probability lp1q
XR �XR with probability lp2q
...°N

i�1
XR with probability lpNq

with N P N0 and�i ¥ N : lpiq � 0. The corresponding PMF for the loop has the
form:

xRlpnq � Ņ

i�1

lpiq iæ
j�1

xRrns
For the computation of the convolutions of the PMF, we use discrete Fourier trans-

formations (also see [7]). The total response time obtainedby analysing a stochastic
regular expression can be fed into performance models like queueing networks to cal-
culate the response time of a service in presence of multipleusers in the system. These
models also include contention delays of the requests into the response time.

4 Underlying Assumptions

The limiting assumptions of the prediction model concern the availabilty of data and
the mathematical model. A tradeoff can be observed: if the mathematical assumptions
are relaxed, more information about the system is required and vice versa. Furthermore,
we discuss the limitations of the presented approach in the following.



Availability of Data: Service effect specifications have to be available for all services
provided by a component. They have to be enriched with execution times, transition
probabilities, loop iterations etc., and this informationhas to be specified by the com-
ponent developer without knowing the usage context and deployment environment of
the component. For the component developer, this can be a hard task that needs to be
supported by tools guiding the estimation of resource demands or measuring the re-
quired data for existing components.

If a parameter influences the performance of a service, subdomains for its input val-
ues have to be identified by the component developer. This canbe done by looking at
boolean expressions of branches and loops that depend on theparameter (or one of the
parameters that was derived from it). For example, the expressionpx   5q implies a
partitioning of the values ofx into two subdomains:x ¡ 5 andx ¤ 5. For both subdo-
mains, the system assembler can specify probabilities thatare mapped to the branching
probabilities according to the expected usage profile. As for the creation of SEFFs, it is
the hope that the subdomains of parameters can be derived from a component’s source
code in a semi-automatic way.

Mathematical Assumptions:The stochastic regular expressions used in our prediction
model are based on Markov chains. Therefore, some of the assumptions of Markov
chains are inherited. The Markov property (the probabilityof going from statei to state
j in the next step is independent of the path to statei) is present in our model, but has
been weakened for loops. We explicitly model (arbitrary) PMFs for the number of loop
iteration. Therefore, our prediction model is not bound to ageometrical distribution on
the number of loop iterations like classical Markov models (also see [6]).

Branching probabilities are modelled in dependence on a service’s input parameters.
Thus, we still assume that the past history of the service’s execution does not influence
the branching probabilities. However, we allow parametrising these probabilities by
characterisation of parameters of a service, thus enablingmore realistic predictions for
different usage contexts.

Many analytical performance prediction approaches assumethat execution times
are exponentially distributed, which significantly eases the analysis. However, the mea-
surements of our case study in section 5 show that, often times, execution times are
not exponentially distributed. For this reason, we used arbitrary distribution functions
which reflect the actual system behaviour more accurately.

However, it is assumed that execution times are stochastically independent. This is
a result of the convolution used to combine the execution times of sequential services.
When convolving two PMFs, the result reflects all possible combinations of execution
times. In reality, the execution times of sequential services might be dependent. For
example, if the execution of one service is slow due to a high system load, the execution
of another service will be slow as well. Such a dependency is not reflected by our model.

Further Limitations: Our approach is a first step and still embodies some limitations
that shall be adressed in future research. Thescalability of the approach is still un-
known, as up to now we have not analysed a large-scale industrial size software archi-
tecture.



Theparameter modellingis limited to primitive and composite data types, and pa-
rameters like streams or pointer are not supported.

So far, only one user request is modelled in the system at the same time, thus,
contentionfor resources by concurrent requests is neglected in this approach. However,
the results of our analyses can possibly used as input parameter for performance models
such as queueing networks, which support contention analysis. Moreover, we do not
support modelling components that startthreadsduring the execution of their services,
as we cannot analyse forks and joins in the control flow.

5 Case study

In the following we report on a case study to validate to applicability of our approach.
The performance of a component-based on-line store for music files (WebAudioStore)
is analysed. Parameters influence resource usage and inter-component control flow in
this application, so the store is well suited to be modelled with our approach. Sim-
plifying the analysed architecture aids in understanding the case study. However, the
considered case is exemplary. Many similar cases could occur in an industrial sized
architecture, whose analyses would be support by our methodas well.

The architecture of the WebAudioStore has been modelled andimplemented, so that
measurements based on the implementation and predictions based on the specification
can be compared. In this case, the performance prediction aims at supporting a design
decision regarding an architectural alternative. The aim of the case study is to validate
the applicability and usefulness of the proposed prediction model. Thus, the following
questions have to be answered:

1. Does the prediction model favour the design with the lowest response time and,
thus, support the right design decision?

2. How much do the computations based on component specifcations deviate from
measurements based on an implementation?

AudioStoreWebForm UserManagement

EncodingAdapterOggEncoder DBAdapter

Web-Browser
HTTP

IAudioStore

IAudioDB

IEncoder

IUsermanagement

IAudioDB

IUserDB IConnection
IDataReader

ICommand

MySqlClient MySqlDB

Application Server Database ServerClient

Fig. 3.WebAudioStore Architecture



5.1 Original Architecture

The simplified architecture of the WebAudioStore can be found in Fig. 3. Note that
the components within the dashed box indicate an extension described in Section 5.2.
Clients can buy and sell music files in the store via a web interface. To sell files, MP3-
files can be uploaded to the store. It is possible to upload multiple files, so that complete
albums can be offered. The files are stored in a MySQL databaselocated on a different
server than the application. Clients connect to the store using DSL lines (128 KBit/s
Upload), the application server is connected to the database server with a dedicated line
with a throughput of 512 KBit/s.

SelectFiles

WebForm.UploadFiles

PArep=(’mean’, $numberOfFiles)

PAparam=(’size’, ’const’, $size1)
PAparam=(’elements’, ’mean’, 
                   $numberOfFiles)

For

While

Do

(a)

IAudioStore.HandleUpload

<<SEFF>>
WebForm.UploadFiles

PArep=(’mean’, $numberOfFiles)

IAudioStore.FinalizeUpload

PAparam=(’size’, ’const’, $size2)
PAparam=(’elements’, ’mean’, 
                   $numberOfFiles)

PAparam=(’size’, ’const’, $size2)
Iterative

(b)

InputStream.Read

<<SEFF>>
AudioStore.HandleUpload

IAudioDB.InsertAudioFile

IAudioDB.InsertAudioFileInfo

IAudioDB.FinalizeUpload

PAparam=(’size’, ’const’, $size3)

PAparam=(’size’, ’const’, $size3)

(c)

Fig. 4. Scenario for the Use Case ”Upload Files”

Fig. 4(a) shows the usage scenario for uploading files to the store. Note that only
the parameter dependencies are included in the illustration. Additional specifications
necessary for the performance prediction like the service’s resource demand are omit-
ted in the illustration to allow an easier understanding. Users select several files from
their hard drives and click the upload button afterwards, which initiates a service of
theWebForm component. This is the performance critical service, sincethe files are
copied to the database during this action.

Its SEFF (see Fig. 4(b)) indicates that the serviceHandleUpload of the compo-
nentAudioStore is called as often as the number of files selected by the user. Thus,
the inter-component control flow is influenced by a parameterprovided by the user. The
serviceHandleUpload (see Fig. 4(c)) calls services of the componentDBAdapter
(via the interfaceIAudioDB), which transmits the files to the database server by exe-
cuting SQL queries. The size of the files influences the response time of this scenario.



The system architect can take these specifications providedby the component de-
velopers and instantiate the included variables with data from the usage scenario. In the
scenario considered here, users usually upload eight to twelve MP3-files with a size of
3.5 to 4.5 MBytes. These files are encoded with a bit rate of 192Kbps.

The response times for this scenario are too slow and shall beimproved transpar-
ently for the clients, so that they can use the store as usual.

5.2 Design Alternative: Compression

It is suggested to reduce the response time of the “UploadFiles” use case by applying
the Fast Path performance pattern [15]. Thus, an additionalcompression component
interface) is put between theDBAdapter and theAudioStore (dashed box in Fig.
3). By reducing the size of the uploaded audio files, the time for the network transfer
between application server and database server is reduced.For the compression, a com-
ponent using the OGG Vorbis encoder (componentOggEncoder) shall be used that
reduces the file sizes by one third by converting the MP3-fileswith a bitrate 192Kbps
to OGG-files with a bitrate of 128Kbps. It is included into thearchitecture using the
adapterEncodingAdapter that implements theIAudioDB interface. Because the
audio quality of OGG-files with lower bitrates is better thanthe one of MP3-files, there
are no significant quality losses expected. However, re-encoding the MP3-files costs a
certain amount of time. With a performance prediction, it isanalysed whether the time
saved by reducing the network traffic outweighs the time for the encoding.

IEncoder.EncodeFile

<<SEFF>>
EncodingAdapter.

InsertAudioFile

IAudioDB.InsertAudioFile

PAparam=(’size’, ’const’, $size)

PAparam=(’size’, ’const’, $size)

PAparam=(’size’, ’const’, $size3)

(a)

WriteFileToDisk

<<SEFF>>
OggEncoder.
EncodeFile

ReadEncodedFileFromDisk

ExecuteEncoder

PAparam=(’size’, ’const’, $size2)

PAparam=(’size’, ’const’, $size2*(2/3))

(b)

Fig. 5. SEFFs of the EncodingAdapter and OggEncoder



The component developer of theOggEncoder component has specified that the
size of the output parameter of theEncodeFile service is2

3
of the input parameter’s

size (Fig. 5(b)).

5.3 Computations

Before answering the question which design alternative is rated best, we present how
the computation process works and what input data was used for the example of the
design alternative employing compression.

From the usage profile, it is known that the size of the input files is 3.5, 4, and
4.5 MB with a probability of 0.1, 0.6, and 0.3 respectively. The system assembler uses
this information to estimate the execution times of the compression (Fig. 6(a)) and the
transfer of the compressed file to the data base (Fig. 6(b)). For the estimation of the
latter, the the compression rate of theOggEncoder has to be considered.
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(b) InsertAudioFile

Fig. 6. Probability mass functions used as input.

Both functions contain relatively few values and can easilyobtained by either mea-
surement or estimation. However, an integrated approach requires that both PMFs are
derived automatically from the size of the input files and service specifications. For this
paper, it is assumed that these values are delivered by the system assembler.

The encoding (EncodeFile) and transfer (InsertAudioFile) to the database
are executed sequentially as shown in the SEFF of serviceEncodingAdapter.
InsertAudioFile (Fig. 5(a)). To compute its execution time, the convolutionof
both PMFs is computed.

5.4 Results

Fig. 7 shows its result compared to the actual measurements.Even though the predic-
tions match the measurements pretty well, they look a littlebit “blurred”. This is a result
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Fig. 7. Execution time of methodInsertAudioFile of theEncodingAdapter.

of the convolution that computes all possible combinationsof its input functions and,
therefore, assumes their independence. This assumption does not hold in this case: If
the file is large, both compression and transfer to the database will consume more time.
To achieve more accurate results, this dependency needs to be reflected in the model.

Knowing the execution time of theEncodingAdapter.InsertAudioFile
the execution time of the serviceHandleUpload of theWebAudioStore compo-
nent is set to the same PMF, since the execution times ofFinalizeUpload and
InsertAudioFile are below one second and are thus set to zero.

As the last step, the execution time of the serviceUploadFiles of theWebForm
component is determined using the computed values as input.The execution time of
FinalizeUpload is assumed to be zero. The usage profile contains informationon
the value distribution of parameternumberOfFiles. This is used for the compu-
tation of the loop execution time. It is known, that eight to twelve files are uploaded
by the users with a probability of 0.1, 0.1, 0.2, 0.4, and 0.2 respectively. This directly
influences the number of loop iterations as expressed by thePArep tag in Fig. 4(b).
Fig. 8 shows the resulting prediction in comparison to the measurements. The curve
is not an exact fit, but represents its structure pretty well.For the original architecture,
the predictions are closer to the measurements (Fig. 8). This is due to the fact that the
error introduced by the assumption of independence in the predictions does not play a
role here. Only the execution time of the serviceDBAdapter.InsertAudioFile
is influenced by the file size of the uploaded files.

Fig. 9 depicts what is predicted if the information on the parameters is neglected and
a common Markovian modelling is applied (the underlying problem is also described
in [6]). Instead of executing the loop in SEFFWebForm.UploadFiles (Fig 4(b))
eight to twelve times as specified by the input parameternumberOfFiles, a loop
probabilityp was used to determine whether the loop is (re-)entered (withprobability
p) or left (probability1�p). Thus, the loop is never iterated with probability1�p, once
with probabilitypp1 � pq, twice with probabilityp2p1 � pq, and so on [7]. Thus, the
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Fig. 8. Execution time of methodUploadFiles of theWebForm.
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Fig. 9. Execution time of methodUploadFiles of theWebForm.



number of loop iterations is geometrically distributed. This influence can be observed at
the predicted execution time. The probability of not executing the loop is highest, after
that the probability decreases and converges to zero. Obviously, the predicted curve
does not match the measurements in any aspect. This shows that the Markov property
for loops (the probability of re-iterating the loop does notchange over time) does not
hold in this case. This was to be expected and can be handled bythe prediction model
for loops used in our approach.

The results described above answer the questions asked in the beginning of this sec-
tion. The prediction model favored the design alternative with compression, which was
also the fastest during our measurements. Thus, the first question can be answered with
“yes”. The PMFs shown in Fig. 8 answer the second question in anon-formal way. To
answer the question completely, a proper measure for the error of two PMFs describ-
ing execution times has to be found and applied to measured and predicted functions.
However, a detailed analysis of the error made by the predictions is beyond the scope
of this paper.

6 Related Work

The SPE methodology [16] was one of the first approaches to analyse the performance
of a software system during early development stages. A survey on model-based per-
formance prediction approaches is provided in [1]. Specifically for component-based
performance predictions, there is a survey on approaches related to the one presented
here in [2].

The CB-SPE approach by Bertolino et. al. [4] uses sequence diagrams and queueing
networks to analyse the performance of component-based software systems. For each
service, the performance is specified in dependency of so-called environment parame-
ters like CPU time or network bandwidth. There is no characterisation of parameters
passed by users to a service in this approach.

Hamlet et. al. [8] presented an approach for the performanceanalysis of component-
based systems that relies on measurements. In this more theoretical approach, compo-
nents compute single functions and their input space is divided into subdomains by
profiling them. Subdomains are only created for the values ofparameters, whereas in
our approach we also allow to specify subdomains over the number of elements in a
collection or the byte size of a parameter.

Bondarev et. al. [5] explicitly model input parameters of software components and
make performance predictions. However, there is no probabilistic characterisation of
parameter values in this approach, as it is assumed that a fixed parameter assignment
can be identified in a certain scenario, which may be realistic for the embedded systems
the approach is aiming at.

Sitaraman et. al. [14] also aim at performance predictions incorporating parameter
values. In their approach, parameters are characterised using a modified form of the
Big-O Notation. However, it is not shown how this characterisation can be transformed
into timing values.



7 Conclusions and Future Work

An approach including the dependencies between component service parameters and
performance has been presented in this paper. Service effect specifications modelling
external calls of a component service were extended to include parameter dependencies
using a notation based on the UML SPT profile. The case study ofan component-based
online shop showed that the method can support design decisions during early develop-
ment stages. Parameter dependent performance specification can lead to more refined
and accurate predictions. The approach is especially suited to model systems with ex-
tensive data flow, because the size of data packets transferred between components can
be included into the predictions.

However, there are several pointers for future work. Modelling concurrency (e.g.,
multiple threads) is not supported by the method presented here and will be included in
the future. Parameter dependencies can also be expressed asOCL constraints, thus ex-
isting OCL checkers could be used to validate the syntax. We will explore this direction
in the future. More complex parameters like streams or pointers can not be modelled.
So far, all necessary specifications have to be created by component developers manu-
ally. Thus, code analysis techniques shall be used in the future to generate parts of these
specifications from source code of existing components semi-automatically.

Acknowledgements: We would like to thank Ralf Reussner and Viktoria Firus for their
ideas and the fruitful discussions.
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