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Abstract. Performance predictions based on design documents aimpabvm
ing the quality of software architectures. In componergdoharchitectures, it is
difficult to specify the performance of individual compotgrbecause it depends
on the deployment context of a component, which may be unhrtovits devel-
opers. The way components are used influences the percadvitrpance, but
most performance prediction approaches neglect this mfkieln this paper, we
present a specification notation based on annotated UMLratizgto explicitly
model the influence of parameters on the performance of adtcomponent.
The UML specifications are transformed into a stochasticalehthat allows the
prediction of response times as distribution functionstti&rmore, we report on
a case study performed on an online store. The results ieditat more accurate
predictions could be obtained with the newly introducedcgfmation and that
the method was able to support a design decision on the ectlhial level in our
scenario.

1 Introduction

Performance is an important quality attribute of a softwaahitecture. It can by char-
acterised by metrics such as response time, throughputremadirce utilisation. In
many existing systems, the reason for bad performance i9dypdesigned software
architecture [15]. Performance predictions based on tacthiral descriptions of a soft-
ware system can be performed before the implementatiots sthereby possibly re-
ducing costs for subsequent refactorings to fix performgmoblems. It is the hope
that such early analyses support the decision for desigmaltives and reduce the risk
of having to redesign the architecture after performanoblpms have been diagnosed
in the implementation.

Component-based software architectures are well-swiegkirly performance pre-
dictions, if information needed for performance evaluatias been specified for each
component by its developers. As component developers t&now in which context
their components will be deployed [8], these performaneeifigations should be pa-
rameterisable for different hardware resources, req@ieedces, and usage contexts to
allow accurate predictions [3].
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In many performance prediction approaches, the compopegifscations are pa-
rameterisable for different usage contexts only by allgnim specify probabilities for
the possible requests to the component’s provided sergcgs [4, 17]). It is often ne-
glected that component services can be called with diffgyerameters, and that these
parameter can have a significant influence on the perfornafrtbe architecture.

The dependencies between parameters of a component semdiés performance
have to be made explicit byomponent developeis the specifications to allow accu-
rate performance predictiorfSystem architectsan then adjust performance predictions
to the expected usage profile. In some cases, the depenslbatieeen parameters and
performance might be intricate and hard to specify, for gxenf a service first per-
forms complex computations on a parameter value an thengelsaits performance
depending on the results. Furthermore, parameters migboimplex objects or even
other components, for which a reasonable specificationfiEwt. However, in this
paper a first step to integrating parameters into perforeapecifications of software
components shall be taken. Parameters considered here adratprimitive or com-
posite data type.

A notation based on extensions to the UML SPT profile [12] avjated to specify
the dependencies between parameters and performancerafilis allows annotating
UML diagrams with performance-related information. As manisting performance
approaches already use this profile (e.g., [4, 11]), theydcalso benefit from the ex-
tensions presented in this paper. Tools evaluating arettdML diagrams could be
changed with low effort to incorporate the extensions. Arotdvantage of the UML-
based notation is the familiarity of the developers, whewfalready know the UML
language. However, the concepts underlying the approasepted here are not bound
to the SPT profile and might be carried over to other notatferes, future performance
related profiles).

The contribution of this paper is a modelling notation forgraeter dependent per-
formance specifications for software components and anrdiogpanalytical perfor-
mance prediction model. Unlike most performance predictitodels, we explicitly
incorporate the influence of parameters on resource densawelbas on the usage of
external services in our predictions. A case study, in whedponse times for a de-
sign alternative of a component-based software architeetre predicted, is provided
to illustrate the benefits of this approach.

The paper is organised as follows: Section 2 describes thieitiieg in our perfor-
mance prediction approach and focuses on parameter depaesieSection 3 shows
the necessary computations, and Section 4 explicitly fisgssassumptions underlying
the approach. The case study of a performance predicticenfeaomponent-based on-
line store is provided in Section 5. Section 6 points outteslavork, while Section 7
draws conclusions and sketches future work.

2 Modelling Component Performance

Several models from different developer roles are usedhfemptrediction of the per-
formance in a component-based architecture in our apprd&eharchitecture itself is



modelled with a UML component diagram by the system archifear each compo-
nent, the component developers provide a specificatiorghwhill be described with
more detail in the next paragraphs. Components are assdeidth system resources
by system deployers using UML deployment diagrams. Theheseaviour is modelled
with activity diagrams, in which each action representsnkecation of an entry-level
component service by a user.

All models are combined and completed by the system ar¢hitém performs the
predictions supported by tools. For this prediction apphod is intended to use a de-
velopment process model outlined in [9]. In the followingggraphs, component spec-
ifications, needed annotations, parameter charactemsatand modelling of resource
demand are elaborated on.

2.1 Components and Service Effect Specifications

Software components are black-box entities with contabtuspecified interfaces.
Provided interfaces publish services of the compondéquiredinterfaces specify
which external services are needed by the component. Merewvthis approach a
component specification contains a so-calstvice Effect Specificatidi®EFF) for
each provided service [13]. It describes how the providedise calls the services
specified in the required interfaces. Here, a service edfgatification is modelled with
UML activity diagrams, where each action represents a cadl tequired service of
the component. Activity diagrams are better suited for cositipn than sequence di-
agrams, as each external service call could be modelledamitdditional activity di-
agram that is the SEFF of another component. In the examaginl, component
provides the servica and requires the servicgsy, andz. The service effect specifi-
cation for servicea on the right hand side shows that, upon invocation, seritiest
calls servicex, and then either servigeor z before it finishes execution.

<<seff>>
<<component>> & ]
provided required
o  C <
<<interface>> <<interface>>
provided required

x()

a() y0
2()

Fig. 1. ComponenC, Service Effect Specification for Serviee

2.2 Annotations

To predict the performance of components, additional mftion is required in the
specification, such as transition probabilities on braectiee number of iterations for



each loop, arrival rates of requests, and resource demaeadsHe time an actions is
expected to execute on a resource). This additional infaomas included into the
SEFFs by annotations according to the UML SPT profile [12EH=action and transi-
tion is annotated with the stereotypgPAst ep>>. The tagged values of the profile
(e.g., to specify resource demands, transition probagsiitepetitions of steps etc.) can
be used as described in the profile specification. Two exiarsd the SPT profile no-
tation are defined in the following (Tab. 1), to better refliet influences of different
usages of the architecture in the model.

Tag Type Multiplicity |Domain Attribute Name
PArep |PAloopValue[0..*] Step::repetition
PAparamPApar [0..%] Step::parameter

Table 1. Redefined Tags

First, we redefine the taBAr ep of the UML SPT profile allowing to either spec-
ify a mean value or to associate percentiles to the numbesayf iterations. To ease
the later analysis, loops are always modelled with theP&gep here. Following the
approach in [10], cycles within the activity diagrams iratied by backward transitions
are not allowed. Loops have to be made explicit whenever éineyused. This can be
done in three ways. First, by annotating an arbitrary behaall node with &Ar ep
tag and taking the called activity as loop body. Second, yjgusop nodes provided in
UML 2.0 as basic element. The loop node allows explicit miaigbf the loop initial-
ization, the repetition test and the loop body. Third, byngsxpansion areas in UML
2.0, which specify a set of actions that are executed itexigton a collection of input
objects. We use loop nodes and expansion areas in our exalaigeon.

( <type-nodifier>, <integer>)
"mean’ | 'percentile’, <real>

<l oopVal ue>
<type-nodi fier>

Tagged Value Type Definition1: PAloopValue

Second, we define a new t&f\par amto characterise parameters of component
services. The signature of a component’s service speaifiesal parameters. However,
for QoS analyses, we need probabilistic characterisatibtise actual parameters that
the formal parameters can be bound on during runtime by thesus

2.3 Parameter Characterisation

Three forms of parameters can be distinguishmglitparameters are arguments passed
to a provided service of a componeB®utputparameters are the return values of these
services.nternal parameters can be global variables or configuration ataghof a



component. All these forms of parameters may have différdluences on the perfor-
mance of a component:

— Resource UsageParameters can influence the usage of the resources present i
the system executing the component. For example, the tim&doexecution of a
service that allows uploading files to a server depends osiffeeof the files that
are passed as input parameters.

— Control Flow between Components:Service effect specifications describe how
requests to provided services are propagated to other amnp The transition
probabilities or number of loop iterations in service effguecifications can depend
on the parameters passed to a service.

— Internal State: Input parameters can be stored as global variables withoma c
ponent, thus becoming internal parameters and alteringnteenal state of the
component. Later, they can be used by computations of otoeided services of
the components and then influence resource usage or céiotxdbetween compo-
nents.

In the following, we consider primitive types (e.g., boaleat, short, char) and
composite types (e.g., String, List, Tree, Hash, Objedf)e®forms of parameters like
streams or pointers are excluded here. It is useful to ctexiae parameters not only
with constant values but with probability distributiona. the following specification
of the tagPApar am we allow modelling probabilities distributions over thalwe, the
subtypes, the number of elements, the byte-size, and thelste of a parameters.

— Value: By providing a probability distribution for the value of anameter, its in-
put domain is partitioned into multiple subdomains. Forregke, for an integer-
parameter: the domain can be partitioned into two subdomains witk 0 and
x > 0 depending onits influence on the performance of the componka system
architect can then specify a probability for each subdomain

— Subtypes:Different subtypes can be passed to a service that has ggesdme
supertype in the signature of a provided service. For exangbeneric service
drawing graphical objects might have a different respomse tlepending on the
type of objects passed to it (e.g., simple circle vs. complaygon). In this case,
it is useful to specify a probability distribution over thetdypes and to neglect the
value of the parameters.

— Elements: For composite data types, it is more difficult to find subdamaiver
the value domain. The performance-influence of collectiiiesarray, tree, or hash
can sometimes be characterised simply by the number of alsnihus, it may be
appropriate for such parameters to specify probabilitirithistions over the number
of elements.

— Size:Parameter values might also be passed between differertsénus creating
a communication delay. The delay can best be analysed Hyteesizeof the pa-
rameter is specified. To refine the specification a probglhiigtribution for the size
could be specified. Note that modelling the overall size chiameter is appropri-
ate if the inner structure of the parameter is unknown andhtimeber of elements
cannot be determined.



— Structure: Additionally, thestructureof collections (sorted, well-formed, balanced,
etc.) can have an influence on performance (e.g., presoregsare usually sorted
quicker than unsorted arrays). Thus, a component devetapgd specify the be-
haviour of a component’s service depending on the structiaeparameter passed
to it.

For a single parameter, several of these characterisatimund be specified. For
more complex parameters like objects it might be necessafiyst decompose them
into more primitive types and then characterise these typesides specifying proba-
bility distributions, it may be convenient to specify mealues, constants, minimum
or maximum values for parameters.

To model parameters in SEFFs, object nodes (representedsagrpactions) from
UML 2.0 activity diagrams can be annotated with the newlyrdsfitagPApar am(see
tag definition 2). The string-value feipar anal ue> is a representative characterisa-
tion of the subdomain of the value (e.§. <= value <= 10") or can be used to specify
a constant value (e.g. "foo”). The integer-value fgrar anSi ze> specifies the num-
ber of bytes of the parameter, while the integer-valuefoar anEl enent s> models
the number of elements in a collection. Finally, the striadiie of<par anSt r uct ur e>
can be used to make any statement about the structure ofltres\a collection (e.g.
"presorted” or "unsorted”), if it has an impact on performoarge.g. in sort-operations).

<par anttr > 1= ( <property-nodifier>)

<property-nodifier> ::= <paranVal ue> | <paranType> | <paranSi ze>
<par anEl enent s> | <paranftructure>

"val ue’, <val ueMbdifier> <string>
"type’, <valueMdifier> <string>
'size', <probMdifier>, <integer>

"el ements’, <probMdifier>, <integer>
"structure’, <string>

<par anVal ue>
<par anilype>
<par anSi ze>
<par antl enent s>
<par antt ruct ur e>

<val ueModi fi er > ='const’ | 'min | 'nmax’ | 'percentile’, <real>
<pr obModi fi er> ='nean’ | 'signma’ | 'kth-nom, <integer> | ’max’
'mn’ | 'percentile, <real>

Tagged Value Type Definition2: PAparam

The dependency between a parameter and resource usagdrof flow between
components can be specified by using scalar variables ofatiget value language
(TVL) of the UML SPT profile. The same variable can be used RApar amtag and
another tag (e.gRApr ob, PAr ep, PAdenmand, etc.) to model a dependency.

For example, in Fig. 2, a collection is passed to sereices parametePl. The
component developer has specified that the number of loogtties of the required
servicey is three times the number of elements ("3*$P1lelements” re/i€ Llelements
is a scalar variable of the TVL) of the collection passed twise a in parametePl.
Once the system architect specifies the number of elemetit® ioollections the ex-



pected users will pass to the service, the number of exteriial is also specified via
the dependency.

In the same example, the type of param®is integer. The component developer
has specified that, depending on whether valug®oére smaller or larger than 100,
either the required servige or z are called, because the transition probabilities of to
these service depend on the variable specified for the psearibe transition proba-
bility from x to z is specified as a difference to turn the cumulative perasniiito a
probability.

Furthermore, paramet®3 is a binary large object. The component developer has
specified that servica takes this parameter and returns parametferwhich is 100
Bytes larger than parameted.

PAparam = (‘elements’, 'mean’, $P1lelements) <<SEFF>>

PL———
PAparam = (‘value', 'percentile’, $P2perc1, 'P2<=100")
PAparam = (‘value', 'percentile’, $P2perc2, ‘ng>100‘)

pP2——=

PAparam = ('size’, 'mean’, $P3size)

Fig. 2. Annotated Service Effect Specification for Servicencluding parameters

Note, that it is only necessary to characterise paramétiwsyi indeed influence the
performance. Most parameters dot change resource usage or alter the control flow
between components, and their characterisation can beéedmiharacterising every
parameter of the services in a complex component-basedemntthie would require
too much effort and not support performance analysis. Whatmeters have to be
characterised because of their influence on performancetzesdefined by the com-
ponent developer. So far, this task has to be done manuallyetkkr, it is conceivable
to develop tools for the reverse-engineering of existinggonents to help component
developers in obtaining the necessary specifications imé-getomatic way. This is
part of our future work.

3 Computing Component Performance

To calculate the response time for a service invocationrélseurce demand of the
service itself and the resource demands of required sartaeee to be added. Resource
demands are specified as probability mass functions (PM&liimpproach for a more
refined modelling, and the necessary computations for aoimpithese functions are
described in the following. More detailed description af tomputations can be found
in[7,10].



To conduct the computations, first the annotated activiagdims are transformed
into stochastic regular expressions, which are describgdi. The mapping is straight-
forward: sequential executions are mapped to sequenpatssions, control flow bran-
ches are mapped to alternative expression, and loops angethap single expressions
with a distributions function for the number of iteratiorihe PMFs modelling the
resource demand are annotated to each expression. Sorkar,afed join in activity
diagrams are not supported by this approach. The abstratdxsyree of the result-
ing stochastic regular expressions is then traversed anillowing computations are
performed for each control flow primitive.

SequenceThe PMF for successive service invocations can be compstéteaconvo-
lution of the single PMFs:

TR,.R,(N) = TR, ® TR, [n]

Alternative: The PMF for a branch in the control flow can be computed as theafu
the PMF weighted by the transition probabilities:

TR, +Ry(N) = p1r2R, [n] + P2z r,[n] (Average case)

Loop: As we have also specified a PMF for the number of loop iteratwiih the
PAr ep tag, the random variable for the resource demand of a lodgri$ is the PMF
for the number of loop iterations):

Xr with probability (1)
Xr+ Xpg with probability 1(2)
Xp =

SN, Xz with probability (V)

with N € Ny andVi > N : [(i) = 0. The corresponding PMF for the loop has the
form:

N i
oru(n) = ). 1) @ il

For the computation of the convolutions of the PMF, we userdie Fourier trans-
formations (also see [7]). The total response time obtaimednalysing a stochastic
regular expression can be fed into performance models lieeiging networks to cal-
culate the response time of a service in presence of muitgdes in the system. These
models also include contention delays of the requestsl@odsponse time.

4 Underlying Assumptions

The limiting assumptions of the prediction model concem akailabilty of data and
the mathematical model. A tradeoff can be observed: if ththemaatical assumptions
are relaxed, more information about the system is requindd/ece versa. Furthermore,
we discuss the limitations of the presented approach inalt@fing.



Availability of Data: Service effect specifications have to be available for allises
provided by a component. They have to be enriched with ei@ttitnes, transition
probabilities, loop iterations etc., and this informatiuas to be specified by the com-
ponent developer without knowing the usage context andogent environment of
the component. For the component developer, this can bedatdslt that needs to be
supported by tools guiding the estimation of resource deima@m measuring the re-
quired data for existing components.

If a parameter influences the performance of a service, snhuhs for its input val-
ues have to be identified by the component developer. Thibeatone by looking at
boolean expressions of branches and loops that depend pardw@eter (or one of the
parameters that was derived from it). For example, the ege(x < 5) implies a
partitioning of the values af into two subdomainst > 5 andz < 5. For both subdo-
mains, the system assembler can specify probabilitieatieanapped to the branching
probabilities according to the expected usage profile. Athfe creation of SEFFs, it is
the hope that the subdomains of parameters can be derivacafcmmponent’s source
code in a semi-automatic way.

Mathematical Assumptionsfhe stochastic regular expressions used in our prediction
model are based on Markov chains. Therefore, some of themgs®ns of Markov
chains are inherited. The Markov property (the probabdftgoing from state to state

j in the next step is independent of the path to stpte present in our model, but has
been weakened for loops. We explicitly model (arbitrary)fMor the number of loop
iteration. Therefore, our prediction model is not bound teeametrical distribution on
the number of loop iterations like classical Markov modelsd see [6]).

Branching probabilities are modelled in dependence omécees input parameters.
Thus, we still assume that the past history of the servicess@tion does not influence
the branching probabilities. However, we allow paramitgshese probabilities by
characterisation of parameters of a service, thus enablorg realistic predictions for
different usage contexts.

Many analytical performance prediction approaches asshateexecution times
are exponentially distributed, which significantly eadesanalysis. However, the mea-
surements of our case study in section 5 show that, ofterstiemecution times are
not exponentially distributed. For this reason, we usedtrary distribution functions
which reflect the actual system behaviour more accurately.

However, it is assumed that execution times are stochégtindependent. This is
a result of the convolution used to combine the executioesiof sequential services.
When convolving two PMFs, the result reflects all possiblmbimations of execution
times. In reality, the execution times of sequential s&wimight be dependent. For
example, if the execution of one service is slow due to a hygtesn load, the execution
of another service will be slow as well. Such a dependenagtisaflected by our model.

Further Limitations: Our approach is a first step and still embodies some limitatio
that shall be adressed in future research. Stedability of the approach is still un-
known, as up to now we have not analysed a large-scale inaustre software archi-
tecture.



The parameter modellings limited to primitive and composite data types, and pa-
rameters like streams or pointer are not supported.

So far, only one user request is modelled in the system ataire gime, thus,
contentiorfor resources by concurrent requests is neglected in tipiaph. However,
the results of our analyses can possibly used as input psgafoeperformance models
such as queueing networks, which support contention aisaly®reover, we do not
support modelling components that stidweadsduring the execution of their services,
as we cannot analyse forks and joins in the control flow.

5 Case study

In the following we report on a case study to validate to ayaidility of our approach.
The performance of a component-based on-line store forailess (WebAudioStore)
is analysed. Parameters influence resource usage anaamgmnent control flow in
this application, so the store is well suited to be modellétth wur approach. Sim-
plifying the analysed architecture aids in understandirgdase study. However, the
considered case is exemplary. Many similar cases couldraancan industrial sized
architecture, whose analyses would be support by our methackll.

The architecture of the WebAudioStore has been modellethaplémented, so that
measurements based on the implementation and predictisesl lon the specification
can be compared. In this case, the performance predictiogs ai supporting a design
decision regarding an architectural alternative. The dith® case study is to validate
the applicability and usefulness of the proposed prediatiodel. Thus, the following
questions have to be answered:

1. Does the prediction model favour the design with the lawesponse time and,
thus, support the right design decision?

2. How much do the computations based on component spécifsadeviate from
measurements based on an implementation?

Client Application Server Database Server

IAudioStore

It
£] HTTP 2] ] 2]
Web-Browser e WebForm — (—(© AudioStore” —(O—— UserManagement

I Py P
|AudioDB ? IUserDB  iconnection

I — e ———— j - 1AudioDB IDataReader -
IEncoder
£] £] £]—0— £]
| OggEncoder EncodingAdapter DBAdapter MySqIClient 1 MySqIDB

Fig. 3. WebAudioStore Architecture




5.1 Oiriginal Architecture

The simplified architecture of the WebAudioStore can be tbimFig. 3. Note that
the components within the dashed box indicate an extengsearibed in Section 5.2.
Clients can buy and sell music files in the store via a webfiater To sell files, MP3-
files can be uploaded to the store. It is possible to uploatipheifiles, so that complete
albums can be offered. The files are stored in a MySQL datdbested on a different
server than the application. Clients connect to the stoigu3SL lines (128 KBit/s
Upload), the application server is connected to the databawver with a dedicated line
with a throughput of 512 KBit/s.

PAparam=('size’, 'const’, $size2)
PAparam=(elements’, 'mean’,

~ < $numberOfFiles)
. , . ~H PAparam=(size’, ‘const’, $size3)
PAriep:( mean’, $numberOfFiles) <<SEFF>> S~

P ~ WebForm.UploadFiles <<SEFF>>
AudioStore.HandleUpload

InputStream.Read
] N e
————— —_— -

/ ,’Iterative \\ PApara:m/=('5ize‘ ‘const’, $size3)
~

—_—————eTmmE———~ I PAparam=('size’, ’cogst’, $size2)| =~
IAudioDB.InsertAudioFile

- |
[ |
{ IAudioStore.HandleUpload |
!
|IAudioDB.InsertAudioFilelnfo
|AudioDB.FinalizeUpload

(©

0
>
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Fig. 4. Scenario for the Use Case "Upload Files”

Fig. 4(a) shows the usage scenario for uploading files totttve.sNote that only
the parameter dependencies are included in the illustrafidditional specifications
necessary for the performance prediction like the servimsource demand are omit-
ted in the illustration to allow an easier understandingerdselect several files from
their hard drives and click the upload button afterwardsictvlinitiates a service of
the WebFor mcomponent. This is the performance critical service, stheefiles are
copied to the database during this action.

Its SEFF (see Fig. 4(b)) indicates that the serteadl eUpl oad of the compo-
nentAudi oSt or e is called as often as the number of files selected by the usas, T
the inter-component control flow is influenced by a paranmtevided by the user. The
serviceHandl eUpl oad (see Fig. 4(c)) calls services of the comporBRAdapt er
(via the interface Audi oDB), which transmits the files to the database server by exe-
cuting SQL queries. The size of the files influences the resptime of this scenario.



The system architect can take these specifications prowgéde component de-
velopers and instantiate the included variables with data the usage scenario. In the
scenario considered here, users usually upload eight loeW#3-files with a size of
3.51t0 4.5 MBytes. These files are encoded with a bit rate oKb2.

The response times for this scenario are too slow and shathpeoved transpar-
ently for the clients, so that they can use the store as usual.

5.2 Design Alternative: Compression

It is suggested to reduce the response time of the “UploaslFilse case by applying
the Fast Path performance pattern [15]. Thus, an additicoalpression component
interface) is put between tHeBAdapt er and theAudi oSt or e (dashed box in Fig.

3). By reducing the size of the uploaded audio files, the tiorete network transfer

between application server and database server is redemetthe compression, a com-
ponent using the OGG Vorbis encoder (comporeggEncoder ) shall be used that
reduces the file sizes by one third by converting the MP3-filils a bitrate 192Kbps

to OGG-files with a bitrate of 128Kbps. It is included into thechitecture using the
adapteiEncodi ngAdapt er that implements thé Audi oDB interface. Because the
audio quality of OGG-files with lower bitrates is better ttthe one of MP3-files, there
are no significant quality losses expected. However, reding the MP3-files costs a
certain amount of time. With a performance prediction, amglysed whether the time
saved by reducing the network traffic outweighs the timeterdncoding.

. ) PAparam=('size’, ‘const’, $size2
PAparam=('size’, ‘const’, $size) P ~(§ - )

/ = <<SEFF>> \
<<$EFF>> OggEncoder.
EncodingAdapter. EncodeFile

InsertAudioFile

WriteFileToDisk

ExecuteEncoder

ReadEncodedFileFromDisk

PAparam=('size/, 'const’, $size)

IEncoder.EncodeFile

\ /
\ /
M m [

P@Eramz(’size , ‘const’, $size3)

IAudioDB.InsertAudioFile

!
/
'}

/ PAﬁaTa‘m:('size’, ‘const’, $size2*(2/3))

@) (b)

-

Fig. 5. SEFFs of the EncodingAdapter and OggEncoder



The component developer of ti@gEncoder component has specified that the
size of the output parameter of tkacodeFi | e service is% of the input parameter’s
size (Fig. 5(b)).

5.3 Computations

Before answering the question which design alternativatisd best, we present how
the computation process works and what input data was usdtideexample of the
design alternative employing compression.

From the usage profile, it is known that the size of the inpesfis 3.5, 4, and
4.5 MB with a probability of 0.1, 0.6, and 0.3 respectivelielsystem assembler uses
this information to estimate the execution times of the coeagion (Fig. 6(a)) and the
transfer of the compressed file to the data base (Fig. 6(b))tHe estimation of the
latter, the the compression rate of thggEncoder has to be considered.

0.6

0.3

N
~

0.2

Probability
Probability

o
[N}

0.1

6 7 8 9 10 35 37 39 41 43 45 47
Execution Time in Seconds Execution Time in Seconds
(a) EncodeFi l e (b) I nsert Audi oFi | e

Fig. 6. Probability mass functions used as input.

Both functions contain relatively few values and can easiltained by either mea-
surement or estimation. However, an integrated approapkires that both PMFs are
derived automatically from the size of the input files and/mer specifications. For this
paper, it is assumed that these values are delivered by skensyssembler.

The encodingEncodeFi | e) and transferl(nser t Audi oFi | e)to the database
are executed sequentially as shown in the SEFF of selimeodi ngAdapt er .

I nsert Audi oFi | e (Fig. 5(a)). To compute its execution time, the convolutiin
both PMFs is computed.

5.4 Results

Fig. 7 shows its result compared to the actual measurenteves. though the predic-
tions match the measurements pretty well, they look a liitlblurred”. This is a result
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of the convolution that computes all possible combinatiohiés input functions and,
therefore, assumes their independence. This assumptemrdi hold in this case: If
the file is large, both compression and transfer to the dataldl consume more time.
To achieve more accurate results, this dependency needséflécted in the model.

Knowing the execution time of thEncodi ngAdapt er . | nsert Audi oFi | e
the execution time of the servitdandl eUpl oad of theWebAudi oSt or e compo-
nent is set to the same PMF, since the execution timds ofal i zeUpl oad and
I nsert Audi oFi | e are below one second and are thus set to zero.

As the last step, the execution time of the serlpé oadFi | es of theWebFor m
component is determined using the computed values as ifpatexecution time of
Fi nal i zeUpl oad is assumed to be zero. The usage profile contains information
the value distribution of parametaunber O Fi | es. This is used for the compu-
tation of the loop execution time. It is known, that eight teetve files are uploaded
by the users with a probability of 0.1, 0.1, 0.2, 0.4, and @spectively. This directly
influences the number of loop iterations as expressed bPAnep tag in Fig. 4(b).
Fig. 8 shows the resulting prediction in comparison to thesneements. The curve
is not an exact fit, but represents its structure pretty irelt.the original architecture,
the predictions are closer to the measurements (Fig. 83.i$tdue to the fact that the
error introduced by the assumption of independence in tedigtions does not play a
role here. Only the execution time of the servidl®Adapt er . | nsert Audi oFi | e
is influenced by the file size of the uploaded files.

Fig. 9 depicts what is predicted if the information on thegmaeters is neglected and
a common Markovian modelling is applied (the underlyinghjpeon is also described
in [6]). Instead of executing the loop in SER&bFor m Upl oadFi | es (Fig 4(b))
eight to twelve times as specified by the input parameterber O Fi | es, a loop
probabilityp was used to determine whether the loop is (re-)entered fwiahability
p) or left (probabilityl —p). Thus, the loop is never iterated with probability p, once
with probability p(1 — p), twice with probabilityp?(1 — p), and so on [7]. Thus, the
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number of loop iterations is geometrically distributedisTinfluence can be observed at
the predicted execution time. The probability of not exewuthe loop is highest, after
that the probability decreases and converges to zero. OQslyicthe predicted curve
does not match the measurements in any aspect. This shavteehdarkov property
for loops (the probability of re-iterating the loop does ohange over time) does not
hold in this case. This was to be expected and can be handiéprediction model
for loops used in our approach.

The results described above answer the questions askesleginning of this sec-
tion. The prediction model favored the design alternatiith wompression, which was
also the fastest during our measurements. Thus, the firstiquean be answered with
“yes”. The PMFs shown in Fig. 8 answer the second questiomionaformal way. To
answer the question completely, a proper measure for toe eftwo PMFs describ-
ing execution times has to be found and applied to measumg@adicted functions.
However, a detailed analysis of the error made by the piiedieis beyond the scope
of this paper.

6 Related Work

The SPE methodology [16] was one of the first approaches tgsnthe performance
of a software system during early development stages. Aegurm model-based per-
formance prediction approaches is provided in [1]. Spadlfidor component-based
performance predictions, there is a survey on approacleedeo the one presented
here in [2].

The CB-SPE approach by Bertolino et. al. [4] uses sequemggatins and queueing
networks to analyse the performance of component-basédaefsystems. For each
service, the performance is specified in dependency of kedoanvironment parame-
ters like CPU time or network bandwidth. There is no charésdéon of parameters
passed by users to a service in this approach.

Hamlet et. al. [8] presented an approach for the performanabysis of component-
based systems that relies on measurements. In this mometicabapproach, compo-
nents compute single functions and their input space igldd/into subdomains by
profiling them. Subdomains are only created for the valugsaodmeters, whereas in
our approach we also allow to specify subdomains over thebeurof elements in a
collection or the byte size of a parameter.

Bondarev et. al. [5] explicitly model input parameters oftsare components and
make performance predictions. However, there is no prdisabicharacterisation of
parameter values in this approach, as it is assumed thatchgasameter assignment
can be identified in a certain scenario, which may be realistithe embedded systems
the approach is aiming at.

Sitaraman et. al. [14] also aim at performance predictioneriporating parameter
values. In their approach, parameters are characterised asmodified form of the
Big-O Notation. However, it is not shown how this charadation can be transformed
into timing values.



7 Conclusions and Future Work

An approach including the dependencies between compoagrits parameters and
performance has been presented in this paper. Service sffecifications modelling
external calls of a component service were extended todiegharameter dependencies
using a notation based on the UML SPT profile. The case studg obmponent-based
online shop showed that the method can support design desiduring early develop-
ment stages. Parameter dependent performance specificatidead to more refined
and accurate predictions. The approach is especiallydstgtenodel systems with ex-
tensive data flow, because the size of data packets traadteetween components can
be included into the predictions.

However, there are several pointers for future work. Madgltoncurrency (e.g.,
multiple threads) is not supported by the method presergszldnd will be included in
the future. Parameter dependencies can also be expres®€il anstraints, thus ex-
isting OCL checkers could be used to validate the syntax. Wexplore this direction
in the future. More complex parameters like streams or pogntan not be modelled.
So far, all necessary specifications have to be created bp@oemt developers manu-
ally. Thus, code analysis techniques shall be used in thieftid generate parts of these
specifications from source code of existing components-senamatically.
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