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Abstract—Many Internet-of-Things (IoT) applications for
smart homes, connected factories, or car-to-car communication
utilize broker-based publish/subscribe communication protocols,
such as the MQTT protocol. Commercial IoT applications have
high reliability requirements for messaging, as lost messages
due to unstable Internet connections or node failures can harm
devices or even human beings. MQTT brokers implement nu-
merous architectural availability tactics, but former analyses
of MQTT communication have mainly focused on performance
measurements under stable conditions. We have created the
MAYHEM resilience testing tool for MQTT brokers and ap-
plied it in various resilience experiments on different MQTT
brokers (VerneMQ, Mosquitto, HiveMQ, EMQ X). We found
that MQTT QoS level 0 is already robust against minor packet
loss, that selected broker message persistency solutions can lead
to lost messages, and that most clustered MQTT brokers favor
availability and performance over communication integrity. The
results can support IoT practitioners in architectural decisions
and researchers as well as broker vendors in optimizing designs
and implementations.

Index Terms—Software Architecture, Message Brokers,
Message-oriented Middleware, Availability, Resilience, Docker,
Kubernetes

I. INTRODUCTION

The market for IoT applications and devices is growing fast,
with dozens of billion devices expected to be connected to the
Internet in the next few years [1]. IoT devices support for ex-
ample smart home scenarios to automate heating and lighting,
smart cities to optimize traffic, factories and production plants
to minimize failures and optimize production and smart grids
to cope with fluctuating renewable energy production [2]. IoT
applications require lean and robust communication protocols,
such as MQTT, COAP, or OPC UA. MQTT is a broker-based
publish/subscribe protocol used in many IoT applications [3].
MQTT messages may for example include device telemetry
data, status information, and configuration data.

Many commercial IoT applications require safe and reliable
message transfers, since lost messages can lead to catas-
trophic failures. However, due to their distributed nature, IoT
systems have many potential sources of failure. Individual
devices may run out of battery power, Internet connections
may be unstable, and backend applications executed in cloud
computing environments may suffer from node failures or
competing workloads. MQTT brokers prepare for these failure
sources with capabilities for message retransmission, per-

sistency, and cluster replication. Whether these capabilities
work as expected in a given application scenario is largely
unknown. There are no known investigations on the resilience
of clustered MQTT brokers.

Existing analyses of MQTT brokers often focus on perfor-
mance evaluation in failure-free test environments (e.g., [4]–
[10]). Several works have tested the resilience behavior of
selected MQTT brokers, but did not included clustered MQTT
brokers (e.g., [11]–[13]). Other works proposed novel clus-
tered MQTT brokers and tested their behavior (e.g., [14]–[16]).
However, there are no systematic investigations in literature
analyzing the resilience behavior of clustered commercial and
open-source MQTT brokers. Developers with high dependabil-
ity requirements need to test the available brokers and carry
out own resilience experiments.

The contributions of this paper are experiences from testing
different resilience variants of MQTT brokers under failure
conditions. We have designed and implemented the MAYHEM
MQTT workload driver and failure simulator to carry out
experiments provoking message loss. MAYHEM was used
to test the MQTT brokers Mosquitto, EMQX, HiveMQ, and
VerneMQ running as software containers in a high availability
Kubernetes cluster, which is representative for commercial IoT
edge gateway clusters. We were able to detect message loss in
all described resilience variants, although broker persistency
and cluster replication of selected brokers can successfully
be used to prevent message loss. We report on differences
detected from the multiple brokers and discuss the tradeoffs
in the different variants.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the architecture for the messaging scenarios
as well as potential failure sources in more detail. Section 3
introduced four practical resilience variants that are rooted in
classical availability tactics and implemented by the available
brokers. Section 4 details our testing setup and the MAY-
HEM workload driver. Section 5 reports experiment results on
message loss and other properties for the different resilience
variants. Section 6 summarizes lessons learned and Section 7
surveys related work.

II. BROKER COMMUNICATION ARCHITECTURE

Fig. 1 shows a generic, clustered MQTT broker architec-
ture common for IoT applications. Publisher clients may



be IoT devices that send MQTT messages (e.g., telemetry
data, status information) to MQTT broker instances via the
MQTT protocol. They may queue unacknowledged messages
for re-sending. Small IoT applications in a smart home may
have dozens of publishers, while large IoT applications in
a smart grid or smart factory may comprise 100,000s of
publishers. Fleets of connected cars or smart appliances may
send 1000s of messages per second over the Internet to the
broker instances. There are many libraries to create MQTT
clients (e.g., Eclipse Paho, MQTT-C, wolfMQTT).
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Fig. 1. Broker-based publish/subscribe architecture in a cluster (conceptual
architecture). Brokers need to cope with different failure sources.

Broker instances decouple publishers from subscribers and
relay messages between them (n-to-m communication). Bro-
kers group messages into topics to which clients can subscribe.
They manage live message queues for topics and can persist
session data to allow for consistency after broker restarts. Pop-
ular MQTT broker implementations are Mosquitto, HiveMQ,
VerneMQ, SwiftMQ, and EMQ X. Several AMQP brokers
provide MQTT plugins to serve as MQTT brokers, but often
they only offer limited support of the MQTT specification.

In larger enterprise scenarios, multiple MQTT broker in-
stances may be deployed within a cluster of computing nodes,
to allow for high scalability and availability supported by
virtualization and containerization. External load balancers
(e.g., MetalLB, HAProxy, or specialized solutions offered by
a cloud provider) and pod routers (e.g., kube-proxy, Cilium)
distribute MQTT client sessions to specific broker instances
running as software container in the cluster. During normal
operation (no failures), sessions are routed consistently in these
two steps, so that traffic for a specific client session is directed
to the same broker instance. In the setup depicted in Fig. 1,
a client might be first directed to host 0 by the external load
balancer and from there to a broker instance on host 1. Broker
instances may relay MQTT messages for topics to other broker
instances to serve additional subscribers of these topics.

Subscribers connect to MQTT brokers and register them-
selves for updates to specific topics. A client can request a
persistent session, in which case the broker stores all sub-
scriptions and unconfirmed messages for a client, even if the

client is offline. This makes communication across unreliable
Internet connections more robust and allows the client to
access the information upon reconnection. Typical subscribers
are other IoT devices, mobile application, cloud applications,
dashboards, analytical applications, or time-series databases.

Critical enterprise IoT applications may have demanding
dependability requirements. A client shall always be able
to connect to a running broker instance (i.e., availability).
A published message shall not be lost before being sent
to the subscribers (i.e., reliability). Subscribers shall receive
messages in the same order as they have been published
and not receive duplicates (i.e., consistency). However, many
applications only require a subset of these quality attributes
and IoT applications are typically not safety-critical.

The architecture sketched in Fig. 1 includes several potential
sources of failure, which may complicate fulfilling depend-
ability requirements:

1) Internet failures: the connection between clients and the
broker may be unreliable, since routing paths might
change over time, middleboxes interfere with the traffic,
or high network loads along the routing path throughout
the Internet. IoT devices may be mobile and rely on
wireless communication, therefore experience packet
loss or connection drops.

2) Host failures: broker instances often execute in parallel
to other workloads and may suffer from other crashing
applications on the same node or host hardware failures.
Operating systems may crash or fail due to other reasons.

3) Broker failures: bugs in broker implementations and
overloads due to denial of service attacks may make
brokers unresponsive and require restarts.

4) Disk failures: all data persisted to disk is subject to
potential disk failures, which is typically addressed with
redundant or distributed storage solutions.

5) Network splits: failing network equipment may lead to
network partitions in clusters.

III. PRACTICAL RESILIENCE VARIANTS

This section provides resilience variants for demanding
dependability requirements in a setting as sketched in Fig.1.
Deeper performance, security, maintainability, extensibility,
and usability investigations are out-of-scope for this paper and
handled in other papers [17]. However, the fulfillment of de-
pendability requirements always involves trade-offs with other
quality attributes, which will be discussed in the following.

A. Variant #0: QoS 0 and TCP Retransmissions

By default single, non-clustered MQTT brokers as well as
clients maintain QoS 0 MQTT sessions. QoS 0 provides an
at most once delivery semantic, where a publisher sends a
message to the broker and forgets about it as soon as it has
transferred it to the network stack. Using TCP, the network
stack ensures a transmission of the message, as it issues re-
transmissions after a time-out. However, no other guarantees
for the delivery are provided. In case the broker crashes or



the network stack fails after receiving the message but before
delivering it to the broker application, the message is lost.

For QoS 0 MQTT subscriber sessions, the delivery of
messages to the subscribers is not guaranteed but already
protected from minor problems such as packet loss due to the
use of a reliable transport protocol. This variant is simple and
fast in terms of MQTT mechanisms as no application-layer
acknowledgments and message buffering are required.

B. Variant #1: QoS 1 with Publication Acknowledgments
—

Publisher Client Broker Instancepublish QoS1

puback

Publisher Client Broker Instance
publish QoS2

pubrec

pubrel
pubcomp

Fig. 2. Variant #1: QoS 1 (two-way handshake) and QoS 2 (four-way
handshake) to handle unstable Internet connections on the application layer.

MQTT provides levels QoS 1 (at least once) and QoS 2
(exactly once) to deal with unstable network connections and
overload scenarios (Fig. 2). If a publisher sends a QoS 1 mes-
sage, the broker acknowledges the successful reception with a
PUBACK message. The publisher queues sent messages until
receiving corresponding PUBACKs and re-sends them after
a timeout. The same mechanism is used between broker and
subscribers, however there is no end-to-end acknowledgement
from publisher to subscriber to keep them decoupled. The re-
sending can lead to duplicated messages.

QoS 2 messages require two request/response flows between
sender and receiver (four-way handshake). On message ar-
rival, the receiver sends a PUBREC message to the sender.
The sender answers with a PUBREL message that is finally
acknowledged with a PUBCOMP message. Only after this last
message, it is ensured that the data message was transferred
successfully and exactly once. This is the most safe way of
messaging but implies a latency penalty due to the additional
network round-trips. For many applications, QoS 1 guarantees
are sufficient as duplicated messages can be tolerated.

This variant is a realization of the “transaction” availability
tactic and only requires proper configuration but no additional
hardware. Besides unstable Internet connections, this variant
can potentially also handle short broker outages (e.g., restarts
or short overloads). However, if a broker fails after sending
a PUBACK, but before delivering the message to subscribers,
messages can get lost. Configuring persistent sessions instructs
the broker to queue QoS 1/2 messages that have not yet been
delivered to clients, for example if these clients are temporarily
offline. This does not automatically imply that the session
data is stored to disk, however brokers such as VerneMQ and
HiveMQ by default activate disk persistence in case of QoS
1/2 messages, which carries an additional performance penalty
besides the network round-trips.

C. Variant #2: Single-Instance Broker / QoS 1 / Persistence
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Fig. 3. Variant #2: Brokers can store messages to disk to survive host failures.
Distributed storage mechanisms in a cluster can further increase availability
and shorten outage periods.

In this variant (Fig. 3), a single, non-clustered MQTT broker
relies on a file-system persistence mechanism. It stores the
clients’ session data including subscribed topics, unacknowl-
edged QoS 1 messages etc. When operating as a container, the
file-system persistence of the MQTT broker may be mounted
into the container context and synchronized by means of
replication on the layer of file storage, which is transparent
for the container orchestration system.

While persistent storage addresses broker failures and
host shutdowns/reboots, additional failure scenarios like disk-
failure or even host failure require a redundancy mechanisms
for the persistent volume. This may be achieved by mounting
a network attached storage into the container context or having
a more sophisticating replication technique for persistent vol-
umes, e.g., distributed storage replication (e.g., ceph1). In K8s
persistent storage is mapped through the concept of Persistence
Volume Claims (PVCs) which we used to map file-based
persistent storage of the brokers during experiments.

Advantages of this variant are the usage of file-system
replication features of brokers which is widely supported,
allowing this variant also for brokers that are not cluster-
capable by themselves. Disadvantages are a downtime for
switch-over in case of a host failure and also an additional
complexity of storage synchronization techniques.

D. Variant #3: Clustered Broker without Queue Mirroring

For this variant, multiple broker instances run in a cluster as
depicted in Fig. 4. The simplest cluster setup (this variant) is
used to scale broker resources and increase service availability
by running individual broker instances on separate hardware
nodes. Broker instances coordinate with each other on topics
of their individual clients and establish a message forwarding
for shared topics. As a result, publishers and subscribers can
be connected to different broker instances of the cluster. To the
clients, the cluster appears like a single broker. When deployed
in a container orchestration environment, such as Kubernetes
(K8s), the cluster can be exposed as service to clients using a
single service IP address.

Resilience and availability consideration: This variant opti-
mizes for availability. As long as at least one broker instance is
available, clients can connect to the cluster, e.g. via a common
service IP address. Also, in case of broker instance failures,
clients can quickly reconnect to another instance, without
having to wait for restart of a broker instance or host. The

1https://ceph.io/

https://ceph.io/
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Fig. 4. Variant #3: Cluster without Queue Mirroring: multiple broker instances
receive and send messages, but do not fully synchronize sessions among
each other. Messages are only forwarded between instances if required for
an already connected subscriber.

dynamic dispatching from service IP address to instances is
done on (re-)connect by a load balancing mechanism.

This variant does not guarantee communication integrity,
i.e., QoS 1/2 MQTT messages may get lost in case of
broker instance failures. This can happen if a broker instance
acknowledges a received message but fails before delivering it
to all subscribers or forwarding it to other broker instances. A
solution to this problem is available with more sophisticated
cluster variants using queue mirroring as described next.

Examples for cluster variants without queue mirroring are
VerneMQ2 and the open-source version of EMQ-X3. By avoid-
ing queue mirroring, this variant is optimized for performance
and low delays as it avoids an additional coordination to
achieve integrity across broker instances. This also reduces
the network traffic inside the cluster.

This variant is a realization of the “Cold Spare” availability
tactic: available broker instance act as cold spare instances
that can immediately take over but do not carry the session
state of the failed broker. However, as the instances are already
running, they do not suffer from the typical long start-up times
of cold spares. Thus, this variant can be already considered
optimal regarding availability, but not regarding integrity.

Load balancing considerations: To effectively use cluster
resources, load balancing mechanisms are applied to distribute
client MQTT sessions to broker instances. In addition, load
balancing is important in case of broker instance failures,
where clients need to be directed to one of the remaining
broker instances. A number of load-balancing mechanisms and
implementations exist that can be used to address these needs
that are distinguished in external and internal mechanisms.

In a cloud environment, external load balancing is a typical
service provided by the cloud platform provider. External

2https://vernemq.com/
3https://www.emqx.io/

load balancing might be implemented using existing rout-
ing infrastructure (e.g. using BGP and equal-cost multipath
(ECMP) routing4), specialized load-balancing hardware appli-
ances, software services (e.g. HAProxy5) running as dedicated
service, or simple software-based solutions (e.g. MetalLB6).

The purpose of the external load balancer is to redirect
network traffic of clients to hosts of the cluster. At the host,
an internal load balancing by a pod router might happen to
forward and distribute client sessions to service instances. This
can be essential because the external load balancer typically
does a simple equal-share distribution of sessions, while the
internal load balancer can take more fine-grained decisions de-
pending on cluster load and actually running service instances.

In case of K8s, the internal load balancing is done by
kube-proxy, which randomly assigns clients to available broker
instances. Kube-proxy establishes client-specific iptables rules
for the traffic forwarding, which remain in place throughout
the client session. In case an assigned broker instance fails,
kube-proxy takes a new forwarding decision to an alternative
broker instance. In case the entire forwarding host fails, all
TCP sessions forwarded by the host fail, not only those to
broker instances on this host.

E. Variant #4: Clustered Broker with Queue Mirroring

This variant extends the simple cluster implementation in
that it implements a queue mirroring concept as depicted
in Fig. 5. Out of the brokers we analyzed only HiveMQ7

supported this feature.
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Fig. 5. Variant #4: Cluster with Queue Mirroring: brokers replicate messages
to other instances in the cluster before acknowledging them to the publishers.

In addition to the special forwarding of messages of topics
to other broker instances with connected subscribers to these
topics and the cold standby failover provided by the simple
cluster variant, here, broker instances also ensure that received

4https://tools.ietf.org/id/draft-lapukhov-bgp-ecmp-considerations-05.txt
5https://www.haproxy.com/
6https://metallb.universe.tf/
7https://www.hivemq.com/

https://vernemq.com/
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https://tools.ietf.org/id/draft-lapukhov-bgp-ecmp-considerations-05.txt
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QoS 1/2 messages have been successfully replicated before
acknowledging the delivery with a PUBACK message to a
publisher.

Replication can cover one or more instances, depending on
the communication integrity requirements and broker configu-
ration. In addition to the messages, also other session data of
clients may be replicated. As a result, clients can reconnect to
the cluster after a broker instance failure and immediately pick
up their session. In this setup, integrity of QoS 1/2 messages
is guaranteed as long as at least one replica of the session and
queue survives in a failure scenario.

As it cannot be ensured that clients connect to a broker
instance that actually maintains a replica of their session and
queue, additional mechanisms are implemented to migrate
sessions to the right instance on client reconnects. One key im-
plication of this variant is that the message throughput for QoS
1/2 messages is reduced, especially if the number of in-flight
messages are limited. Before a message is acknowledged, the
broker instance needs to coordinate with other instances and
replicate the message, which decreases the messages that can
be processed by the cluster in a given time.

IV. TESTING SETUP

MAYHEM (MQTT AvailabilitY HEdging Module) is writ-
ten in Python 3.9 and uses Eclipse Paho 1.5.0 libraries for
MQTT communication. The main components of MAYHEM
are publisher and subscriber instances which are connected to
the MQTT broker under test.

The generic test setup is simple: an instance of the publisher
publishes incrementally numerated messages to a single topic.
Multiple subscriber instances receive the messages from the
brokers due to a subscription for the topic. All MQTT clients
log their sent or received messages to log files which are
evaluated according to the following consistency criteria:

• Missing messages, i.e., messages that have been pub-
lished, but not received by subscribers.

• Duplicated messages, i.e., messages which are received
by subscriber instances multiple times.

• Out of order messages, i.e., enumerated messages that
are received out of sequence by subscribers. Note that
duplicates are not counted as out of order messages if
their number are lower than the highest message number
received by respective subscriber since those ordering is-
sues can be detected easily by the subscriber application.

One design decision for our test setup was to use as many
default settings for MQTT brokers and clients as possible.
Still, some tweaks were introduced, e.g., for QoS-1-based ex-
periments we enforced in-flight-window size of 1 for publisher.
This means that the publisher explicitly waits for a PUBACK
after sending a message. Increasing the in-flight window size
resulted in a vast number of out of order messages which was
not compatible with our use cases.

Additionally MAYHEM can observe broker instances to
which MQTT clients are connecting during experiments (cf.
Section V-C and V-D). The actual broker instance within the
cluster is not detectable via MQTT protocol due to used load

EMQ X HiveMQ Mosquitto VerneMQ

Language Erlang Java C Erlang
Version 4.2.1 4.4.2 1.6.12 1.11.0
Multi-threading yes yes no yes

Persistence ext. DB (ent-
erprise plugin) file file int. DB

Cluster support free enterprise no free
Queue mirroring no enterprise no no

TABLE I
EVALUATED MQTT BROKERS AND THEIR FEATURES

balancer setup. Therefore, broker-specific management APIs
are used to relate MQTT client ID to the cluster instance name.
A typical test run consists of one publisher and two subscriber
instances, publishing 5000 and receiving 10000 messages on
one topic, respectively. Messages contain a sequence number
and a timestamp resulting in a few bytes of payload.

To test broker resilience, MAYHEM performs deletion of
K8s pods via K8s RESTful APIs. Per default, pod deletion is
performed with a grace period of 0 to simulate catastrophic
failures, e.g., node failures. Applications running in a pod’s
containers are terminated by a SIGKILL signal preventing
them to perform any graceful shutdown actions like extra
pre-termination synchronization or data persisting. Further
failure scenarios, e.g., partial network packet loss or complete
network isolation, were simulated using Chaos Mesh8.

The evaluated MQTT brokers are summarized in Table I:
• EMQ X is an Erlang-based multi-treaded broker sup-

porting clustering without queue mirroring even in the
free version. Persistency requires storage backend plugins
available for enterprise edition (EMQ X EE) only, which
then transfer messages to separately deployed storage
solutions. Plugins are available for example for Redis,
PostgreSQL, MongoDB, or InfluxDB. We used the Redis
integration in our experiments.

• HiveMQ is a Java-based broker with cluster support in
the enterprise version. It is the only broker in the list
supporting queue mirroring in cluster mode and stores
persistent data to the file system.

• Mosquitto is a C-based single-threaded broker with no
cluster support. For persistence, it has an internal database
called “mosquitto.db”.

• VerneMQ is an Erlang-based cluster-capable broker. For
persistence, it uses an internal LevelDB key/value store
for QoS 1/2 messages, which in our experiments was
mapped to a persistent volume claim in K8s.

For all brokers, we tried to use the maximal persistence
settings, e.g., Mosquitto is configured to persist on every
network event.

Additionally we tried out emitter9 and SwiftMQ10 MQTT
brokers, however initial tests failed due to emitter-specific time

8https://www.chaos-mesh.org/
9https://emitter.io/
10https://www.swiftmq.com/

https://www.chaos-mesh.org/
https://emitter.io/
https://www.swiftmq.com/


to live and messages recall settings and random transmissions
of null-bytes in SwiftMQ. We leave investigation of these
brokers to future work.

Our hardware setup is based on a Starling X R3.0 Bare
Metal All-in-one Duplex installation running on two servers
each with a dual-CPU Intel Xeon CPU E5-2640 v3 2.60 Ghz,
2x 8 Cores, 16 Threads, L3-Cache 20 MByte, Dual Processor
(i.e., 64 cores overall). Each server has 256 GB RAM (1866
Mhz) and run CentOS 7 Linux with a K8s installation based
on Docker with persistence realized via ceph. The MAYHEM
tests are run on a Windows 10-based server having a Xeon
E5-2660 v4 2.0 Ghz CPU with 16 GB of RAM. Servers are
interconnected via Gigabit Ethernet.

V. RESILIENCE EXPERIMENT RESULTS

A. Variant #1: QoS 1/2 with Publication Acknowledgements

The research question for variant #1 was: What is the effect
of MQTT QoS 0/1/2 levels in case of network packet loss
due to unstable connections? Former benchmarks analyzed the
latencies of QoS 0/1/2, but did not simulate packet loss [4],
[5]. Lee et al. [11] concluded from experiments that end-to-
end latency and message loss are closely related. Thangavel
et al. [12] measured MQTT latency for QoS 1 under network
packet loss and showed that the average end-to-end latency can
go up to 10 seconds for 25 percent packet loss. Roy et al. [13]
showed in experiments that larger message payloads can lead
to higher message losses in case of network disturbances in
wireless networks when using MQTT-SN over UDP. Non of
these works considered the effect of TCP retransmissions.

Our hypotheses for the research question were: 1) QoS
level 0 shows higher message loss under packet loss, whereas
QoS level 1 and 2 show no message loss. 2) QoS level 1
and 2 have higher publisher-to-subscriber latencies due to
network retransmissions. We designed an experiment setup
using MAYHEM with one publisher sending 1000 messages
to the Mosquitto MQTT broker (at 100 msg/second), which
relayed the messages to two subscribers. In each experiment all
clients and the broker used the same QoS level configuration,
i.e., 0, 1, or 2. We simulated packet loss using Chaos Mesh
(based on netem) on outgoing messages of the broker network
interface. Before the experiments the configured packet loss
percentage was validated by sending 100 ping messages to
the broker network interface.

Fig. 6 shows the successfully transferred messages (e.g.,
99%) for different percentages of simulated packet loss. Most
of our experiments showed no message loss. Only for a
simulated packet loss of 30% the successfully transferred
messages dropped to 83% for QoS 0. Simulating packet loss
above 30% led to many connection problems between clients
and brokers and was therefore excluded. Wireshark analyses
showed that each experiment under packet loss included a
number of TCP retransmissions.

As a second y-axis the chart shows the mean publisher-to-
subscriber latency in seconds. The mean latencies for QoS 0
and 1 are close for up to 20% packet loss. Latencies for QoS
2 rapidly increase for higher packet loss percentages, as the
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rise steeply for more packet loss.

entire four-way handshake needs to be redone in case of packet
loss. The worst-case publisher-to-subscriber latencies for QoS
1 and 2 actually went up to more than 30 seconds. This may
be problematic for many practical applications.
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Fig. 7. Publisher-to-subscriber latency outliers: MQTT brokers sporadically
combine multiple messages into a single package. If lost due to simulated
packet loss, TCP retransmission lead to high latencies.

The latencies includes a few high outliers, whereas the
median value for all experiments was comparably low. We
analyzed these outliers deeper using Wireshark and found
that the broker sporadically bundles multiple small MQTT
messages into a single packet when sending them to the
subscribers. Fig. 7, from an experiment run with 10000
messages, shows the effect of several multi-message packets,
whose retransmission lead to high latencies. If such multi-
message packets get lost due to network problems, very high
publisher-to-subscriber latencies can occur in retransmission.
In further analyses we found that the number and size of multi-
message packets increases with higher messaging frequencies.

In conclusion, in our experiments QoS level 0 turned out
to be quite robust against simulated packet loss up to 20%.
TCP retransmissions were sufficient in our experimental setup
to avoid message loss. Avoiding extra roundtrips from higher
QoS levels can lower latencies and increase performance. High
message frequencies should be avoided by throttling in case
of unstable network connections to prevent bundling of many



messages into single packets.

B. Variant #2: Single-Instance Broker / QoS 1 / Persistence

The research question for variant #2 was: does broker persis-
tency prevent message loss? Our hypothesis was that brokers
can save queued messages to disk and retrieve these messages
even after a broker failure and restart to correctly transfer them
to all subscribers. Other researchers have investigated different
aspects of message persistency, but did not evaluate popular
MQTT brokers. For example, Sen et al. [14] implemented
their own cluster MQTT broker called “Nucleus”, which
used a distributed Redis backend for persistent storage. They
emulated broker failures and showed that the Redis backend
could limit message loss to less than 1% in their experimental
setup. Petnik et al. [18] used Apache Kafka on top of MQTT to
stream messages into a storage backend, but did not measure
message loss under failure conditions. Geier [16] implemented
an own message storage and migration solution for MQTT
brokers.

Start

p = new Publisher();
s1 = new Subscriber();
s2 = new Subscriber();

i=1;

p.publish(i);
i++;

i<=5000

End
Wait for grace time period 

to receive all messages

i==2000 s2.disconnect()

i==2500
kill_broker_pod()

s2.reconnect()

false

true

Fig. 8. Flow chart of a generic MAYHEM experiment.

Our experimental setup included different commercial and
open source brokers with enabled message persistency. Each
broker had the persistent message queue length configured to
10000 and used persistent volume claims in K8s on top of the
ceph file system. Fig. 8 shows the experiment procedure. One
publisher sends 5000 messages (payload: 4 bytes) using QoS
1 to be received by two subscribers. MAYHEM disconnected
subscriber 2 at message 2000 to fill up the broker queue
for disconnected clients and to trigger disk persistency. After
publishing message 2500, MAYHEM “hard-killed” the broker
pod (SIGKILL) without a grace period to emulate a node
failure. Thus, K8s automatically restarted the broker pod and
all clients reconnected once the broker was back online. Due
to QoS 1, subscriber 1 should receive all messages, but may
get duplicates. Also subscriber 2 should receive all messages,
including message 2000-2500 when it was disconnected, since
they were to be restored from the persistent storage. After
the publisher had sent all messages, MAYHEM waited 20

seconds to allow the broker to deliver late messages to the
subscribers. Each experiment was repeated 50 times to make
temporary glitches from the K8s cluster visible. In case
of using persistency, we tried to used maximal persistence
settings for all brokers, e.g., in the configuration of mosquitto
we persist on every network event.

EMQ X EE
(Redis)

HiveMQ
(int. DB)

Mosquitto
(int. DB)

VerneMQ
(LevelDB)

Average Message
Rate (msg/sec) 400.12 391.24 282.78 216.06

Average Message
Loss 1.75% 0% 0% 5.34%

Average Message
Duplicates 8.52% 0.14% 0.03% 0.02%

Average Message
Out-of-Orders 1.07% 0% 0% 0%

TABLE II
MESSAGE LOSS FOR MQTT BROKERS WITH ENABLED PERSISTENCY:

VERNEMQ AND EMQ X LOST MESSAGES IN OUR EXPERIMENTS,
MOSQUITTO AND HIVEMQ NOT.

Table II summarizes our experiment results. In 50 runs
each, Mosquitto and HiveMQ showed no message loss at all,
despite killing the broker in the middle of each experiment.
Both Mosquitto and HiveMQ had very few message duplicates
and almost no out-of-order messages (Mosquitto had 2-3
out-of-order messages in a few experiments). Although our
experiments showed no message loss, we for example did not
analyze larger payload sizes or higher message frequencies,
which could challenge the persistency mechanisms.
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Fig. 9. Message loss for VerneMQ with persistency.

For VerneMQ, 81% of the experiments showed no message
loss, validating that the persistency was correctly configured.
For the remaining 19% of the experiments we experienced sub-
scribers unable to reconnect to the restarted brokers, which led
to a loss of messages at the end of the experiment runs. This
led to an overall average message loss of 5.34%. Fig. 9 shows
the message loss for subscriber 1 and 2 in each experiment
(50 repetitions). In case of message loss, the subscribers lost
the last 1500 messages (message 3500-5000). We analyzed
the connection problems with Wireshark and found that the
broker failed to immediately send CONNACK messages to
subscriber CONNECT messages, although the lower level TCP



sessions were correctly established. We did not experience
such sporadic connection problems for the other brokers, and
thus assume an issue in the broker implementation.
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Fig. 10. Message loss for EMQ X EE with Redis persistency backend.

For EMQ X, we first tested a MySQL storage backend,
which proved to be too slow (around 50 msg/sec). Thus, we
configured a Redis storage backend that allowed much faster
publishing (400 msg/sec). In 67% of the experiments, the
subscriber correctly received all 5000 published messages, but
in 33% of the experiments subscribers showed message loss,
leading to an overall average message loss of 1.75%. Fig. 10
indicates that in most cases with message loss subscriber 2
lost around 500 messages, i.e., exactly the amount of messages
supposed to be queued and persisted during the experiments.
We however found all messages stored in Redis and conjecture
that the transfer back from Redis to the subscribers did not
work correctly in these cases. In some cases subscriber 2
lost only a dozen of messages, and in a few other cases
also subscriber 1 showed message loss. EMQ X with Redis
persistency also showed a number of out-of-order messages,
which could be caused by the unordered key/value storage.

To summarize, variant #2 with a single instance broker
persisting QoS 1 message to disk proved to be a reliable
solution only for Mosquitto and HiveMQ. Both VerneMQ
and EMQ X showed message loss, where our results rather
indicate implementation problems than systematic conceptual
problems. While persistency can prevent message loss as
demonstrated, it always requires a full broker restart, which
can take up to 30 seconds. During this time the publishers
cannot deliver messages and need to build up internal queues.
If an application however does not have high publishing
frequencies and can deal with 30 second broker outages,
variant #2 can be an easy to configure and handle solution
for resilient IoT messaging. It avoids the complexity and
intricates of a clustered configuration, where different broker
instances need to be set up and synchronized. Especially in
combination with a distributed file system that replicates the
PVCs to different physical nodes, a single instance broker with
persistency could also tolerate entire node failures. However, it
should be noted that our small-scale experiments only provide
a limited snapshot, as we did not analyze different payload
sizes, message frequencies, nor very high client counts.

C. Variant #3: Clustered Broker without Queue Mirroring

The research question for variant #3 was: do clustered
brokers without queue mirroring prevent message loss in case
of broker failures? Our hypothesis was that the clustering could
prevent message loss in case of graceful pod termination, be-
cause of the possible hand-over of session data to other cluster
instances. However, in case of ungraceful pod termination,
message loss should occur, since the killed broker instance has
no chance of handing over its sessions and K8s restarts another
pod instance without caring for persistently stored session data.

Most evaluations of clustered MQTT brokers in literature
focus on performance [4], [6], [8], [10], but do not investigate
resilience. Sen et al. [14] implemented their own clustered
MQTT broker “Nucleus” and used a common storage backend
for resilience. They measured package loss when emulating
broker failures, which was however lower in case the storage
backend was activated. Thean et al. [15] deployed multiple
Mosquitto instances using Docker Swarm on five Raspberry
Pis and used an HAProxy load balancer. While focusing
on performance measurements, they also stopped one of the
brokers nodes during the tests and showed that the broker
cluster could recover without message loss and duplication.
Authors of [17] investigated VerneMQ, HiveMQ, and EMQ X
for performance and security and also found message loss in
case of simulated broker failures. They however did not check
graceful termination, connection problems and duplicates.

Our experiment setup included for each type of broker
two broker pods running on one physical nodes to eliminate
uncertainties regarding to load balancing. Furthermore, K8s
was configured to always require two running instances, i.e., to
restart failed pods. In these experiments, no queue replication
happened between the broker pods, since the tested brokers
do not support this feature except HiveMQ. To achieve a fair
comparison, we disabled queue replication in HiveMQ which
provoked a warning message from HiveMQ, because it is
not a recommended configuration. We also disabled persistent
volume claims in this setup, so that brokers could not retrieve
message queues from disk.

Individual experiments were changed compared to Fig. 8:
We connected the publisher and subscriber 1 to broker pod
1, and subscriber 2 to broker pod 2, and then sent 50000
messages (4 bytes payload) using QoS 1. We either killed
(SIGTERM) or force-killed (SIGKILL) broker pod 2 at mes-
sage 2500, upon which K8s started a new broker instance
to restore the two instances required in the configuration.
Graceful termination gives a broker instances 30 seconds to
shut down in an ordered manner and potentially transfer stored
session data to other instances. For ungraceful termination, this
is not possible. Graceful termination can happen in case of
node maintenance, but only ungraceful terminations correctly
emulate node failures. Each client was configured with a
keep-alive timer of 8 seconds and then immediately tried to
reconnect in case of a detected connection failure.

Fig. 11 summarizes the results of about 20 experiments
per broker. All brokers lose messages regardless graceful or
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ungraceful termination. EMQ X EE lost no messages for
subscriber 1 (as expected, since it was always connected to
broker pod 1) in both termination settings. During graceful
shutdowns, subscriber 2 lost about 1000 messages on average
due to the re-connection time. For ungraceful shutdowns, sub-
scriber 2 showed reconnection problems (broker not answering
to MQTT connect messages) resulting in large loss numbers.

HiveMQ did not demonstrate reconnection problems. As ex-
pected, for ungraceful termination subscriber 2 lost messages
while being disconnected for several seconds. Surprisingly, we
observed a loss of low number of messages for subscriber 1
which never experienced a reconnection to the broker.

VerneMQ lost no message for subscriber 1 in both settings.
For graceful termination, however, we observed subscriber 2
reconnection problems where subscriber was often unable to
reconnect at all and lost all messages after the disconnect.
This behavior is similar to EMQ X EE, however technical
details are different. Fig 12 shows an example reconnection
attempt, where it takes the broker 72 seconds to answer a
connect command. At that point, the client already initiated a
TCP connection finalization, which the broker does not handle
correctly, leading to a connection reset.

Fig. 12. Wireshark trace of unsuccessful reconnection attempt by VerneMQ.

D. Variant #4: Clustered Broker with Queue Mirroring

The final set of experiments was addressing the existence of
a resilient MQTT broker which was especially providing no-
loss and no-reordering guarantees for MQTT QoS 1 messages
with a simultaneous high availability.

From the list of tested brokers, only HiveMQ falls into
this category when using the default configuration of queue
mirroring over broker instances. Our tests mostly confirmed
those properties on a same experiment setup as in variant #3:
only two messages were lost in one run with an ungraceful
termination scenario. Some duplicates were present around
message number where subscriber was reconnecting, still those
could be simply filtered out on the application layer, since no
reordering occurred. For graceful termination, we experienced
non-systematic message loss of subscriber 1, similar to previ-
ous variant. We leave investigation of this behavior to future
work.

To evaluate possible performance penalties for queue mir-
roring we tracked the average duration between sending and
receiving a message on 500000 message runs without any
disturbance. As expected, an increase was observed with a
an average delivery duration of 5.86 ms without mirroring
vs. 8.25 ms when mirroring was turned on. These numbers
only provide a rough indication. For larger, higher-frequency
messages replicated among more than only two pods, the
expected latencies would likely increase much higher.

VI. LESSONS LEARNED

We summarize experiences from the experiments as follows:
High availability does not prevent message loss: Broker

vendors claim high reliability of their clustered implementa-
tions. However, “high availability” simply means that clients
can always (re-)connect to a running instance and keep sending
or receiving messages even if one or more of the instances
fail. It does not necessarily guarantee absence of message loss,
as clustered brokers may acknowledge messages that are not
replicated or persisted. VerneMQ and EMQ X do not replicate
all messages among cluster instances automatically, but instead
rely on disk persistence for preventing message loss. This can
be a good compromise between integrity and performance,
but is not sufficient for applications that do not tolerate any
message loss.

Load balancers are critical components for resilience:
For a non-cloud cluster, a custom, external load balancer is
required, which can be an additional single point of failure.
Software solutions such as MetalLB provide different config-
urations (e.g., Layer 2 mode vs. Border Gateways Protocol)
that have different benefits and drawbacks. BGP may require
a special network router, while Layer 2 mode may trigger
failovers caused by missing pods but not by node failures.
While load balancers are not specific for MQTT communi-
cation, their configuration is an important factor contributing
to the overall availability and reliability of the system and
needs to be treated with special care. When we started our
investigation, we underestimated this factor.

MQTT QoS 0 over TCP rather robust against packet
loss: Our experiments showed that MQTT QoS 0 can still
deliver messages reliably over TCP in case of limited packet
loss. TCP retransmissions may thus be sufficient to prevent
message loss in certain application scenarios, and higher level
handshakes on the MQTT layer with QoS 1 / 2 could be



avoided to improve performance. However, our experiments
only had few clients, small payloads, and low message fre-
quencies. Additional experiments would be required to explore
the utility of TCP retransmissions further. Our experiments
showed that higher messaging frequencies can lead to bundling
of messages into single packets, whose loss can lead to high
latencies for retransmissions.

Large problem and solution space does not favor a single
design: There are many different IoT application profiles,
with vastly different numbers of clients (e.g., a dozen vs.
several million), different message frequencies (e.g., 1 msg/sec
vs. 1000 msg/sec), different payloads (e.g., 4 Bytes vs. 4
KBytes), different resilience requirements (e.g., no message
loss, no duplicates, no out-of-order), different availability
requirements (e.g., zero downtime vs. tolerable downtime).
Accurate requirement specification is needed to design an
appropriate solution. Reference scenarios are largely miss-
ing. We analyzed different variants implementing well-known
availability tactics, mostly driven by the default offerings of
the broker vendors. While QoS 1/2 is supported by almost
any MQTT broker, persistency is activated by default by
VerneMQ and HiveMQ. Only HiveMQ supported message
replication to other instances before acknowledgement. If high
availability and scaling is required, but minor message loss
can be tolerated, then clustered MQTT brokers without queue
mirroring may be a viable solution. If availability is of less
concern, but no messages may be lost, then persistency on an
non-clustered broker can be a more simple solution.

MQTT workload drivers challenged by failures: We
started our resilience testing using existing MQTT workload
drivers (e.g., JMeter, MZBench), since they provided the
capabilities to run publishers and subscribers in configurations
as described above. However, when we killed brokers or
simulated other failures, we encountered different errors which
complicated or even invalidated the measurements. MZBench
workers ripped TCP connections apart or reported message
transfers in their statistics that actually did not happen, since
the broker had been killed. These experiences led to the
implementation of our own MAYHEM tool using Eclipse
Paho.

VII. RELATED WORK

The Software Engineering Institute (SEI) in Pittsburgh, US
has collected a catalog of availability tactics that could be
considered as templates for the different resilience variants
investigated in this paper [19]. Rozanski and Woods [20]
describe the availability and resilience perspective of software
architecture, including architectural tactics and checklists for
architects. Our work can be considered an evaluation of
technology-specific implementations of these tactics.

Many authors discuss the architecture of IoT applications.
Tsigkanos et al. [21] sketch a vision and roadmap for resilient
IoT systems and favor decentralized control over central con-
trol to avoid a single point of failure. They also carry out exper-
iments with coordinating resources at runtime [21]. Alkhabbas
et al. [3] report from an industry survey with 66 participants

that 73% of them are using the MQTT protocol in their IoT
applications. They design a goal-driven approach to adapt IoT
systems responding to changes in the topology and the status
of their components [22]. De Sanctis et al. [23] propose a
reference architecture for self-adaptive IoT systemsThese work
do not deal with specifics of MQTT communication.

Other research is concerned with analyzing and comparing
message brokers, including MQTT brokers. Sommer et al. [7]
compare AMQP, MQTT, ZeroMQ, and Kafka for industrial
applications, but do not investigate resilience. Based on ex-
periments with the Mosquitto MQTT broker, Lee et al. [11]
showed a correlation of message loss and end-to-end latency
for each QoS level. Thangavel et al. [12] compared the MQTT
and COAP protocols under message loss and measured the
impact on latency. Roy et al. [13] focused on the MQTT-
SN protocol (MQTT over UDP) and carried out experiments
involving Mosquitto and message loss. These works did not
yet consider broker persistency nor clustered MQTT brokers
and their specifics.

Finally, there are proposals for clustered MQTT brokers
in literature which involve resilience investigations. Sen et
al. [14] implemented an own clustered MQTT broker called
“Nucleus” using node.js. Thean et al. [15] used a bridge to
deploy multiple Mosquitto brokers in Docker Swarm. Koziolek
et al. [17] analyzed different open source and commercial
clustered MQTT brokers. Our work contributes to these works
by deeper investigating and comparing different variants for
resilient IoT applications using MQTT. We have designed and
implemented our own workload driver MAYHEM, which can
be independently used be to simulate applications and failures.

VIII. CONCLUSIONS

We found through experimentation that MQTT traffic can
be robust to a certain extent against low network packet loss
even on the lowest configured QoS level 0. Non-clustered
MQTT brokers combined with persistency can provide a
simple solution for more resilient IoT messaging, in case
broker restarts are tolerable in the application context and
horizontal scalability is not needed. Clustered MQTT without
queue mirroring can suffer from message loss in case of node
failures, only clustered MQTT brokers with activated queue
mirroring turned out to be mostly resilient, albeit slower, in
our tests.

Our results target researchers designing new communication
mechanisms for IoT applications, as well as practitioners with
challenging dependability requirements. In future work, we
aim at extending our experiments to additional MQTT brokers
and test higher message frequencies, higher number of clients,
and different load balancers. More long-time tests could reveal
additional reliability issues with the clustered and virtualiza-
tion execution environment. To lower the effort for setting up
a testbed and carrying out experiments, it is conceivable to
capture the empirically found resilience data into simulation
models that could be parameterized for different application
profiles to carry out quick resilience tests.



REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE communications surveys & tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrahmanyam,
R. Xiang, G. Kallas, N. Krishna, S. Fassmann, M. Keen et al., Building
smarter planet solutions with mqtt and ibm websphere mq telemetry.
IBM Redbooks, 2012.

[3] F. Alkhabbas, R. Spalazzese, M. Cerioli, M. Leotta, and G. Reggio,
“On the deployment of iot systems: An industrial survey,” in 2020 IEEE
International Conference on Software Architecture Companion (ICSA-
C). IEEE, 2020, pp. 17–24.

[4] HiveMQ-Team, “Benchmarks hivemq 3.0.0 on aws,”
https://www.hivemq.com/benchmark-hivemq3/, Sep. 2015.

[5] ScaleAgent, “Benchmark of MQTT servers,” https://bit.ly/2WsTw0Z,
Jan. 2015.

[6] HiveMQ-Team, “10,000,000 mqtt clients: Hivemq cluster benchmark
paper,” https://www.hivemq.com/benchmark-10-million/, Oct. 2017.

[7] P. Sommer, F. Schellroth, M. Fischer, and J. Schlechtendahl, “Message-
oriented middleware for industrial production systems,” in International
Conference on Automation Science and Engineering (CASE). IEEE,
2018, pp. 1217–1223.

[8] D. O’Mahony and D. Doyle, “Reaching 5 million
messaging connections: Our journey with kubernetes,”
https://www.slideshare.net/ConnectedMarketing/reaching-5-million-
messaging-connections-our-journey-with-kubernetes-126143229, Dec.
2018.

[9] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC UA
versus ROS, DDS, and MQTT: performance evaluation of industry 4.0
protocols,” in IEEE International Conference on Industrial Technology
(ICIT), 2019.

[10] M. Chaudhari and P. Gupta, “Building pubsub for 50m concurrent
socket connections,” https://blog.hotstar.com/building-pubsub-for-50m-
concurrent-socket-connections-5506e3c3dabf, Jun. 2019.

[11] S. Lee, H. Kim, D.-k. Hong, and H. Ju, “Correlation analysis of mqtt
loss and delay according to qos level,” in The International Conference
on Information Networking 2013 (ICOIN). IEEE, 2013, pp. 714–717.

[12] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Per-
formance evaluation of mqtt and coap via a common middleware,” in
International conference on intelligent sensors, sensor networks and
information processing (ISSNIP). IEEE, 2014, pp. 1–6.

[13] D. G. Roy, B. Mahato, D. De, and R. Buyya, “Application-aware end-to-
end delay and message loss estimation in internet of things (iot)—mqtt-
sn protocols,” Future Generation Computer Systems, vol. 89, pp. 300–
316, 2018.

[14] S. Sen and A. Balasubramanian, “A highly resilient and scalable broker
architecture for iot applications,” in 2018 10th International Conference
on Communication Systems & Networks (COMSNETS). IEEE, 2018,
pp. 336–341.

[15] Z. Y. Thean, V. V. Yap, and P. C. Teh, “Container-based mqtt broker
cluster for edge computing,” in International Conference and Workshops
on Recent Advances and Innovations in Engineering (ICRAIE). IEEE,
2019, pp. 1–6.
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