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Abstract. Industrial control systems (e.g. programmable logic control-
lers, PLC or distributed control systems, DCS) cyclically execute con-
trol algorithms to automated production processes. Nowadays, for many
applications their deployment is moving from dedicated embedded con-
trollers into more flexible container environments, thus becoming ”Vir-
tual PLCs”. It is difficult to update such containerized Virtual PLCs
during runtime by switching to a newer instance, which requires trans-
ferring internal state. Former research has only proposed dynamic up-
date approaches for single embedded controllers, while other work in-
troduced special Kubernetes (K8s) state replication approaches, which
did not support cyclic real-time applications. We propose a dynamic up-
date mechanism for Virtual PLCs deployed as K8s microservices. This
approach is based on a purpose-built K8s Operator and allows control
application updates without halting the production processes. Our ex-
perimental validation shows that the approach can support the internal
state transfer of large industrial control applications (100.000 state vari-
ables) within only 15 percent of the available cycle slack time. Therefore,
the approach creates vast opportunities for updating applications on-the-
fly and migrating them between nodes in a cloud-native fashion.

Keywords: Software architecture, PLC programs, Kubernetes, Docker,
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1 Introduction

PLCs and DCSs are at the heart of many industrial production processes, such
as power generation, mining, chemical production, or paper production [6]. The
DCS is market size is at 13.4 BUSD in 2020 and expected to grow significantly
in the next few years [3]. PLCs and DCSs receive telemetry data from sensors
and cyclically run control algorithms that produce output signals for various
actuators, such as motors, pumps, mixers, reactors, heat exchangers, etc. This
typically relies on embedded controllers running on purpose-built hardware for
high reliability. However, in recent years, more and more automation customers
are starting to adopt server-hosted PLC programs running in container frame-
works, due to their reduced costs and easier application management.
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Updating PLC/DCS programs shall ideally not require a production stop,
which can incur high costs for the associated machinery and processes. Patch-
ing PLC runtimes or applications is therefore undesired and only rarely done.
Container orchestration (e.g., Kubernetes) allows switching to an updated vir-
tual runtime or application in another container “on-the-fly”, by transferring the
signal input subscriptions and output publications. However, the newly started
runtime or program need to work with the same internal state (i.e. a set of vari-
ables storing intermediate calculations) as the former runtime. Due to the short
execution cycles (e.g., every 100 ms), the required state transfer from container
to container needs to be fast, so that the control actuators continuously receive
their control signals without interruption.

Researchers have formerly proposed dynamic update approaches for control
applications (e.g. [20, 19, 15]), but these works were limited to single embed-
ded controllers and could not utilize the advanced orchestration concepts of a
container systems. Other researchers validated that PLC programs can achieve
their real-time behavior if deployed as software containers (e.g. [11, 5, 15]), but
did not investigate updates involving state transfers. Specifically, for container
orchestration systems, there are approaches for state replication (e.g., [13, 14,
18], which however do not involve PLC programs with short execution cycle
times.

We propose a novel state-transfer approach for dynamic updates of Virtual
PLCs deployed as K8s microservices. The contributions of this paper are 1) a
conceptual architecture for a state transfer method that utilizes the capabilities
of a container orchestration framework, 2) a procedure for state transfer across
network nodes while adhering to industry standards, and 3) a rationalization of
the design decisions for the entire architecture. The approach allows to update
both PLC programs and runtimes during system execution. A K8s Operator
monitors a running PLC engine, starts an updated PLC engine in parallel, is-
sues the internal state transfer, and then switches over the input/output signal
handling to the updated engine.

To validate the approach, we have implemented the conceptual architecture
exemplary based on open-source components (i.e., OpenPLC, Open62541, Ce-
real, Kubernetes, Docker). In a series of experiments, we simulated updating
large control applications derived from existing power production and mining
plants with up to 500K internal state variables. For an application with 100K
state variables the approach was able to transfer the internal state in less than
15 ms, which is significantly lower than the required cycle time. This validates
that the approach can update large running applications as desired.

This paper is structured as follows: Section 2 provide an introduction to PLC
and DCS controllers, as well as containers and the communication framework
OPC UA. Section 3 analyzed related work. Section 4 presents the conceptual
architecture and the rationale for the design decisions. Section 5 describes the
prototypical implementation and testbed, before Section 6 explains the exper-
imental results. Finally, Section 7 lists assumptions and limitations underlying
the approach.
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2 Background

PLCs and DCS controllers are used to automate industrial processes, such
as power, paper, or chemical production, as well as mining applications or steel
plants [6]. Such controllers often rely on real-time operating systems, such as
Embedded Linux, FreeRTOS, or VxWorks. A set of five different programming
languages for these controllers was standardized as IEC 61131-3 in the early
1990th, including function block diagrams, structured text, and ladder logic [6].
IEC 61131-3 control runtimes execute algorithms such as ’PID controllers’, cycli-
cally, usually with cycle times between 10 and 1000 ms. For safety-critical appli-
cations such controllers feature redundant processing units with special purpose
hardware failover mechanisms. So-called SoftPLCs (e.g., controller runtimes de-
ployed on workstations or servers) are today mostly used in development and
testing. However, a growing market of server-deployed Virtual PLCs is expected
thanks to the constantly increasing computing capabilities.

Containers (e.g., LXC, Docker) provide an operating-system-level virtual-
ization layer for Linux processes using namespace isolation and resource limi-
tation with cgroups [7]. They can be used to package applications with their
required libraries and are a preferred deployment target for microservices. Ap-
plications with many containers can be managed with a container orchestration
engine, such as Kubernetes. Stateless microservices in Kubernetes are preferred,
since they can be easily horizontally scaled-up to support workloads of large
internet applications. Virtual PLCs are stateful services, which are also sup-
ported by Kubernetes. Usually they have comparably constant workload and
do not require horizontal scaling. Industry analysts speculate that software con-
tainers will replace embedded software to a large extent in the future, since they
significantly improve managing and updating services in an efficient and less
error-prone manner [4].

OPC UA provides a middleware and information modeling for industrial ap-
plications [10]. It is designed for monitoring industrial devices from workstations,
but was lately extended to also support fast, deterministic controller-to-field de-
vice communication [2]. OPC UA includes a client/server protocol on top of
TCP/IP, as well as a publish/subscribe mechanism on top of UDP. OPC UA
address spaces may hold both configuration and sensor data. The Open Pro-
cess Automation Forum [12] has identified OPC UA as the core communication
mechanism in future open and interoperable industrial control systems. Con-
trollers and certain field devices shall be equipped with OPC UA clients and
servers, while legacy field buses shall be integrated via OPC UA gateways.

3 Related Work

Numerous authors have surveyed the field of dynamic software updating,
which includes many approaches in the last 20 years [16, 1]. Specifically, for real-
time systems, Wahler et al. [20] proposed a component framework and update
algorithm based on shared memory transfer. In experiments the framework was
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able to transfer a 4000 byte internal state of a cyclically executing control pro-
gram below a 5 ms deadline. Later, they extended the work to allow iterative
state synchronization over multiple execution cycles [19]. Their mechanism pro-
vides more flexibility but can lead to a never terminating state transfer in case of
large or very volatile states. Prenzel et al. [15] discussed dynamic updates of IEC
61499 applications but did not transfer internal variables in their experiments.
None of these works assumed a container deployment or state transfer across
different nodes.

Another line of research is concerned with the deployment of Virtual PLCs
in container environments, which shall offer more flexibility for updating
and portability [4]. Moga et al. [11] compared virtual machines and containers
as deployment targets for industrial applications. They ran the microbenchmark
’cyclictest’ inside a Docker container on an Intel Xeon E5 and found that the
jitter introduced by Docker was below 20 microseconds, therefore negligible for
most industrial applications. Goldschmidt et al. [5] proposed different use cases
for containerized Virtual PLCs, among them dynamic updating. They also exe-
cuted ’cyclictest’ inside a Docker container on a Raspberry PI 2 and showed that
the average overhead was below 100 microseconds. Sollfrank et al. [17] deployed
a PID controller based on Simulink C-code in Docker onto a Raspberry PI 4
and concluded that it can meet soft real-time requirements, since the container
overhead was below 150 microseconds. These works were mostly concerned with
characterizing the overhead introduced by Linux containers, but did not inves-
tigate dynamic updates in detail.

Outside the industrial automation domain, researchers have proposed ap-
proaches for state replication in container orchestration engines. Netto
et al. [13] introduced the DORADO protocol to order requests in Kubernetes
that are saved to shared memory (i.e., etcd) and can be exchanged between
container replicas. In experiments, they showed that this increases latency and
lead to a leveling out throughput but can tolerate container failures. This work
assumes a continuous state transfer between redundant replicas, instead of a
one-shot transfer to an updated application. Vayghan et al. [18] introduced a
State Controller for Kubernetes that can replicate internal state between con-
tainers to enable fail-over scenarios. State is stored into a persistent volume and
a standby container can take over serving clients in case of the primary container
failing. Experiments with a video streaming application, where the transferred
state was the client current streaming position, showed that the approach could
reduce the service outage time significantly. Oh et al. [14] proposed a checkpoint-
based stateful container migration approach in Kubernetes. None of these works
is concerned with cyclically executing control applications that need to adhere
to short deadlines.

4 State-Transfer Approach

This section describes the architecture of our proposed state-transfer approach.
First, a simple example explains the required internal state transfer in more de-
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tail, followed by a description of the static architecture. The dynamic procedure
of the state transfer follows next, before the section concludes with a discussion
of the included architecture decision points, alternatives, and rational for the
made decisions.

4.1 Example

Fig. 1 depicts a typical control program in IEC 61131-3 Structured Text (i.e.,
Pascal-like syntax) from the industrial domain. The function block FT PIWL
refers to a proportional integral (PI) controller with dynamic anti wind-up (WL).
It can for example be used to regulate the filling level in a tank or the pressure
in a pipe. The program cyclically computes its outputs Y based on the internal
state variables t last and in last, e.g., every 100 ms. Its actual execution runtime
is usually well below the cycle time, e.g., below 5 ms. For a dynamic update of
the program, where for example another host node shall take over the execution,
these state variables needs to be transferred within the cycle slack time (e.g., 95
ms) in order not to interrupt the underlying production process.

Fig. 1: Example PLC program with internal state to be preserved. The variables
t last and in last need to be transferred in case the runtime is updated.

Typical control applications in process automation may contain thousands
of such state variables, since they regulate thousands of sensors and actuators
within a single production plant. During programming, engineers mark specific
variables as ”retained”, indicating that they need to be saved and restored in
case a PLC runtime needs to restart. These retained variables are also used by
our approach for dynamic updates at runtime.

4.2 Static View

Fig. 2 shows a component and deployment view of our state transfer approach.
The figure shows a single master node and two worker nodes as a minimal
example. In a full-scale system, many worker nodes and redundant masters would
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be used. The system features a container orchestration engine (e.g., Kubernetes)
in order to flexibly deploy and update Virtual PLCs. Today’s physical embedded
controllers typically need to be shut down, patched, and restarted in case the
runtime system needs updates. Fig. 2 depicts typical Kubernetes components
required on the nodes in light gray (e.g, Kube API server, kubelet, kube-proxy).

Worker 1 contains a PLC Runtime System deployed as a ”virtual-plc-
pod”, a K8s custom resource including a container. The custom resource allows
the user to parameterize the pod for real-time specifics. This pod can be consid-
ered as a microservice of an entire DCS. Preferably, the PLC Runtime System
pods are deployed on a Linux node with the PREEMPT RT kernel patch to
achieve soft real-time behavior and minimize jitter in the cycle periods. The
PLC Runtime System can execute IEC 61131-3 applications by consuming in-
put signals and sending output values via the OPC UA protocol, to ensure
interoperability with IO devices from different vendors. These OPC UA signals
are either directly sent by field devices with OPC UA servers or come from field
gateways that translate traditional fieldbus protocols or analog signal connec-
tions [8]. Such devices are not depicted in the component view for brevity, as
a single PLC runtime could control hundreds of devices connected via sophisti-
cated network topologies.
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Virtual PLC Operator

OPC UA
S ignal Inputs

«virtual-plc-pod / container»
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Fig. 2: Virtual PLC state transfer (combined component and deployment dia-
gram)

An automation engineer can upload a PLC Program from an Engineering
Tool via the PLC Runtime Systems OPC UA Configuration interface. After
start-up, the PLC Program carries Internal State in the form of numerous
state variables as illustrated in Section 4.1. The PLC Runtime System here
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provides a mechanism to serialize the current values of this Internal State and
send it via its OPC UA Configuration interface to any OPC UA client.

Our approach features a custom K8s Operator called Virtual PLC Op-
erator. This relies on a standard extension mechanism for K8s1. The operator
contains a custom K8s controller called Virtual PLC Controller that moni-
tors Virtual-PLC-Pods and handles their lifecycle via the K8s API as well as
their OPC UA configuration interfaces.

The Virtual PLC Controller has three options to detect a dynamic update
request triggering a state transfer:

1. Updated PLC program: The controller can detect if an automation engi-
neer uploaded an updated PLC program via the Engineering Tool. Updated
programs often include only minor changes of the internal state structure;
thus the internal state of the former program can be largely mapped to
the updated program. Newly introduced variables are set to default values,
removed variables are discarded.

2. Updated PLC runtime: The controller can detect if an operator has
pushed a new container image of the PLC Runtime System to the con-
tainer registry. This can be caused by a changed configuration of the runtime
system or a new compiled version due to bug fixes or security patches.

3. Updated host: The controller can detect if K8s scheduled restarting a PLC
Runtime System pod on another node for carrying out maintenance on the
former node. For example, the administrator may have selected a node for
an operating system update or a hardware replacement.

If such an update request is registered, the Virtual PLC Controller follows
the procedure depicted in Fig. 3.

4.3 Dynamic View

After detecting and validating the update request (Step 1), the Virtual PLC
Controller starts the pod of the PLC Runtime System 2 (Step 2), possibly on a
separate node (here: worker 2). The controller connects to both PLC Runtime
systems via OPC UA and uploads the desired application to the PLC Runtime
System 2. It also connects the OPC UA IO input signals to this runtime by
setting up according subscriptions, so that it can start executing based on live
inputs. Output signals will be computed but not published to the field devices,
as long as the state transfer has not been executed and the correct execution is
verified.

After this less time-critical initialization, the controller enters a time-critical
phase in step 4-9 that needs to complete within the cycle slack time. The con-
troller pauses the execution of both runtimes (Step 4) in order to prevent updates
to the internal state. The controller extracts the internal state (e.g., the values
of t last and in last in Fig. 1) from runtime system 1, which includes serializa-
tion to a binary large object (step 5). Via the OPC UA configuration interface

1 https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
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Fig. 3: Dynamic Flow of the state transfer (UML activity diagram)

and the method GetState, the controller retrieves the internal state (step 6)
and sends it the runtime system 2 (step 7) using its RetrieveState method.
This runtime system deserializes and extracts the state, overwriting the corre-
sponding internal state variables (step 8). Finally, the controller resumes both
runtime systems, so that they continue executing their control algorithms to
compute outputs.

With both engines running, but only runtime 1 publishing output signals to
the devices, the controller verifies the correct behavior or runtime 2 by comparing
its computed output values to the ones from runtime 1. If runtime 2 produces
incorrect values (e.g., by drifting beyond a predefined threshold), the controller
rolls back the entire update, stops runtime 2 and informs the user (step 12)
of an update failure. If the values are correct and no substantial drift between
the values of both runtimes is detected, the controller disables output signal
publishing of runtime 1 (step 13) and activates the output signal publishing by
runtime 2 (step 14). In this case the update was successful. PLC runtime 1 can
be terminated and archived to allow for rollbacks later on.

4.4 Decision Points

The state transfer architecture includes a number of decisions, which we ratio-
nalize in the following.

Transfer mechanism: The transfer mechanism is a core component to en-
able a reliable, flexible and fast state transfer. As state transfer shall be possible
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through node/pod boundaries and fit into the open process architecture defined
by OPAF, we selected OPC UA as transfer mechanism. OPC UA is purpose-
built for industrial applications and provides interoperability as virtual control
engines will require to have built-in OPC UA servers. Additionally, by using
the already required OPC UA and not exposing additional HTTP, MQTT, or
proprietary sockets, the VirtualPLC attack surface is limited. OPC UA can be
combined with TSN to provide deterministic real-time communication.

Serialization mechanism: We decided to transfer the application state as a
binary large object (BLOB). A BLOB allows to abstract the internal application
memory structure, which is important as the internal memory state structure
might be vendor-specific. Hence, using a BLOB instead of structured data, allows
to keep the interface of the state transfer service stable for different virtual
PLCs. Additionally, it gives the ability to use data compression techniques or
encryption.

State Transfer Service as K8s Extension: The state transfer service
is a K8s Operator (Virtual PLC Operator) running in an own pod. It should
not directly be built into the virtual PLC runtimes, as this would require code
duplication in each engine. Ideally, the PLC runtime is not aware of the Virtual
PLC Operator and simply exposed the OPC UA interfaces anyhow required
by OPAF. Hence, the state transfer is seamlessly integrated in the Kubernetes
infrastructure and complexity is hidden from the user by not having a separate
interface in the Kubernetes microservice architecture.

Container Virtualization: The state transfer service is designed to be used
in a virtualization context by exchanging the application state between different
virtual PLCs, deployed as docker container or Kubernetes pods. The architecture
and process of the state transfer service can also be used without containers, but
this scenario would need an orchestration instance/component which handles
the network configuration for the virtual PLC engines and enable the startup
and shutdown of those. In general, the K8s system eases the state transfer, the
orchestration of virtual control engines and the scheduling significantly.

5 Prototypical Implementation

We prototypically implemented the architecture using open source components.
This shall ensure repeatability of the experimental evaluation, which is thus not
constrained to commercial software. The concepts behind the architecture also
apply to commercial components.

Virtual PLC: We selected OpenPLC2 as the PLC Runtime System of our
prototype. As OpenPLC did not have an integrated OPC UA server to receive
and sent signal values, we enhanced the engine by adding an OPC UA server
based on the open62541 stack3. The OPC UA server was integrated in parallel
to the control engine and other components. It shows all variables which are
available for the actual running control program as well as the required interface

2 https://www.openplcproject.com/
3 https://open62541.org/
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Fig. 4: Prototypical Implementation of the State Transfer Approach

methods for the state transfer. Additionally, we implemented functionality for
retrieving the application state out of OpenPLC’s internal memory as well as
writing back an application state. Therefore, the functionality to pause and re-
sume the entire control engine was introduced and implemented. We also added
a new component to OpenPLC, the so called MemState Serializer. This compo-
nent takes the retrieved application state and serializes it to an array of bytes as
well as deserializes it to the necessary internal memory structure. Keeping this
component separate from the control engine allows us to exchange the underly-
ing serialization library without touching the main functionality of the Virtual
PLC. In the prototypical implementation we used a fast, open source C++ se-
rialization library called Cereal4.

Virtual PLC Operator: In order to evaluate the proposed state transfer
approach, we implemented the state transfer service in C++. The operator con-
tains three main components, a webserver, an OPC UA client and the Virtual
PLC Controller. The state transfer service is implemented in C++ by using an
open source OPC UA stack, open62541 and a webserver implemented in python,
based on Flask5. The small webserver allows the user to communicate with the
service through a web interface as well as through a REST interface. Two main
functions are realized by the integrated Open62541 OPC UA server, a function-
ality to get an serialized application state from a virtual engine (here called
GetState) and another function to send back an serialized application state to a
virtual engine (here called ReceiveState).

Virtual PLC Controller: The core component of the state transfer takes all
necessary inputs from the webserver or the REST interface and starts initiating
the state transfer by using the OPC UA client and the required interfaces. The
controller receives the serialized application state, which should be transferred
from one virtual engine to the other, via the GetState interface and then send it
to the receiving engine by using the ReceiveState interface. Hence, this compo-
nent ensures that all data is transferred properly and the sending and receiving
virtual PLCs confirm the successful transfer. In order to guarantee real-time re-
quirements, the controller is implemented as a separate POSIX thread with high
real-time priorities. This ensures a deterministic execution of the state transfer,
if deployed in a real-time capable operating system.

4 https://uscilab.github.io/cereal/
5 https://flask.palletsprojects.com/
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Software Platform: Finally, the Virtual PLC Operator as well as the Vir-
tual PLC are put into Docker containers and K8s pods. We used the open source
StarlingX6 cloud infrastructure software stack that includes Kubernetes and
Docker. StarlingX includes CentOS as Linux OS and nodes can be configured to
use a PREEMPT RT patched kernel for deterministic execution using real-time
priorities. However, the results should be similar on other K8s platforms.

Hardware Environment: Our testbed consisted of two master servers
(“controllers”) in a high availability deployment as well as two worker nodes. All
servers were connected using Gigabit Ethernet. Experiments utilized the worker
nodes, which were made up of HPE ProLiant DL380 Gen10 Rack Servers with
Dual Intel Xenon Silver 4110 CPUs (40 cores) and 256 GB of RAM.

6 Experimental Evaluation

6.1 Test Application Sizing

To make our experimental setting realistic, we reviewed several larger industrial
control applications to determine typical cycle times and application sizes.

The control application for one of the largest Liquid Natural Gas (LNG)
plants was reviewed by Krause [9] and characterized to comprise of 650.000
variables distributed to 18 different hardware controllers and 10.000 IO devices
(≈ 30.000 variables per controller and 550 IO per individual controller). The
cycle time of these controllers was 500 ms.

A different project from the area of mining also used around 500 IO-devices
per and almost 200.000 variables in total. Here, the configured cycle time was
250 ms. A third project for a chemical plant had 350 IO-devices per controller
and around 100.000 variables in the control programs, while running on a 1000
ms cycle time.

From these applications it becomes clear that the application sizes and cycles
times vary from domain to domain. Furthermore, the number of variables may
reflect the sophistication of computations needed for a given application. We
decided to follow a conservative approach and assume a cycle time of 100 ms for
our experiments. In addition, we aimed a state transfer of around 100.000 vari-
ables within the cycle slack time. We also assume that all variables are marked
as “retained”, meaning that they are included in the state transfer, although in
practice a much lower number of variables is usually retained. If these conditions
are met, then most of the typical industrial application should be compatible
with our state transfer approach.

We assume each of the 100.000 variables encoded with 32 bits, thus aiming
at a internal state size of around 400 KByte plus metadata. Assuming that the
control algorithms need 10 percent of the cycle time for their computation (i.e.,
10 ms), then these 400 KByte need to be transferred in less than 90 ms, resulting
in a minimum transfer rate of about 4.5 MByte / sec. Typical RAM, bus, and
network bandwidths are far beyond this threshold, so the main bottleneck is
expected to be the CPU and possibly the network latency.

6 https://www.starlingx.io/
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6.2 Jitter Characterization

To characterize the real-time properties of our hosts used for running the experi-
ments, we executed the tool ’cyclictest’ of the Linux Foundation7. It is commonly
used to benchmark real-time systems. Cyclictest measures the time between a
thread’s intended and actual wake-up time, which can include latencies in the
hardware or operating system. To simulate meaningful real-time stress condi-
tions, we also used the Linux tool ’stress’8 as follows:

stress -i 40 -c 40 -d 40 --hdd -bytes 20M -m 40 --vm-bytes 10
cyclictest -l100000 -m -Sp99 -i200 -h400 -q >output

The tool thus starts as many CPU-intensive and IO-intensive threads as
given CPU cores and also uses the hard-disk, resulting in a 100 percent utilized
system. Cyclictest is repeated 100K times with the highest thread priority 99.
Fig. 5 shows a histogram of the results.

Fig. 5: Cyclictest Results (Histogram)

The worst-case latency was 315 microseconds, which can be compared to
other platforms in the OSADL Real-time QA Farm9. Since our experiments
use cycles times at 100 milliseconds derived from practical application cases, we
deem the jitter of our test host node negligible and not interfering with our state
measurement experiments.

6.3 State Transfer Time

To determine the feasibility of transferring a realistic internal state within a
cycle slack time of 90 ms, we deployed the prototypical implementation of our
dynamic update approach on two worker nodes within our K8s cluster. One
OpenPLC runtime ran on the first node, while the Virtual PLC Controller and

7 https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
8 https://manpages.ubuntu.com/manpages/eoan/man1/stress.1.html
9 https://www.osadl.org/Latency-plots.latency-plots.0.html
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the second OpenPLC runtime ran on the second node. We uploaded a generated
test application with a 100 ms cycle time to the OpenPLC runtime with a varying
size of internal state variables. In our experiments, we measured the time for the
critical serialization, state transfer, and deserialization (step 5-8 in Fig. 3) from
the Virtual PLC Controller.
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Fig. 6: State transfer times via OPC UA for different number of variables: 100K
variables can be transferred in less than 15 ms, well below the cycle slack time
of 90 ms.

For each state size from 5000 to 500.000 variables, we executed 100 experiment-
runs to account for outliers and distortions in the K8s cluster. Fig. 6 shows these
aggregated state transfer measure, including both the maximum measured time
and the average time for 100 runs. The results show that our dynamic update
approach could transfer the internal state of 100.000 variables (400 KByte) be-
tween the two runtimes and nodes via OPC UA in 10.87 ms on average. The
longest run took 14.19 ms. This duration is well below the target cycle slack
time of 90 ms (approx. 16 percent of the cycle slack time).

Within 90 ms, approx. 600.000 variables could be transferred via network
boundaries within the cycle slack time, which thus provides room for very large
application. However, not fully utilizing the slack time is a safe way to assure
meeting soft real-time guarantees, also under less optimal conditions (e.g., inter-
fering workloads).

To characterize the jitter and find out where the state transfer execution
time is spent, we ran an additional experiment of 1000 runs for the state size of
100.000 variables. Fig. 7 shows the execution times for the serialization (step 5),
the retrieval of the state by the Virtual PLC Controller (step 6), the retrieval
of the state by the second OpenPLC runtime (step 7), and the deserialization
(step 8).

Serialization and deserialization show a mostly constant execution time with
occasional outliers that contribute to the overall state transfer times. It is as-
sumed that the processes may have been preempted during these outliers, which
could possibly be addressed with better fine-tuned real-time thread-priorities.
The deserialization (step 8) was on average more than 5 times slower than the
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Fig. 7: Execution times for step 5) to step 8)

serialization (step 5), 3.8 ms vs. 0.7 ms. We profiled the code using Valgrind and
Callgrind and traced the different times to the external library Cereal used for
serialization and deserialization, which is inefficiently implemented for the dese-
rialization of arrays by using string stream-buffers. Other serialization libraries
could be tested in this context.

The network transfer times in Fig. 7 are 4.3 ms and 2.1 ms on average. The
figure shows that these transfers are much less constant than serialization/deseri-
alization and introduce a additional jitter around one millisecond to the overall
state transfer time. This could be attributed to the non-prioritized TCP/IP
stacks in the real-time operating system as well as the missing prioritization
of network packets in the TCP/IP connection. Using time-sensitive networks
(TSN) with appropriate priority classes could be applied to reduce this jitter for
even more deterministic state transfer times.

7 Assumptions and Limitations

The following assumptions and limitations are underlying our approach:

– The approach is not applicable and not meant for fast machine control ap-
plications in discrete automation requiring sub-millisecond cycle times.

– We used comparably fast server hardware, which currently are often not
be available in many smaller production plants, but which is however also
required for running non-trivial container workloads in an orchestration sys-
tem.

– Our experiments included only simulated IO devices, but not real devices
communicating with the OpenPLC runtime.

– Our prototypical implementation relied only on open source components.
Other OPC UA SDKs, serialization libraries, or PLC runtimes coming from
open source or commercial software could potentially achieve better or worse
results.
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– We restricted the approach to an OPC UA based state transfer. We used
client/server communication via TCP/IP in our setup, while pub/sub com-
munication via UDP could be faster. Alternative communication protocols
could streamline the state transfer.

– We set all processes in the implementation to the highest real-time thread
priorities, which can result in suboptimal jitter.

– The prototypical implementation did not include the verification step 11),
which has been shown in other works (e.g., [19], see monitoring component).

Some of these limitations remain conceptual, others could be addressed in
future work and additional experiments.

8 Conclusions

We have introduced a novel approach that allows updating industrial control
applications at runtime. Automation engineers can much more flexibly change
parameters of their control algorithms in order to optimize the automation of
many production processes. These algorithmic optimizations are nowadays based
on large-scale data analytics and can contribute to major production cost sav-
ings. The operators do not need to stop the production processes but can perform
the updates on-the-fly, which lowers the barrier to consider updates significantly.

In the Industrial Internet-of-Things (IIoT), more and more sensors, actu-
ators, and controllers are equipped with IP connectivity, requiring continuous
security updates. The approach thus also enables updating the PLC runtimes
systems to fix bugs and security issues, since the K8s Operator can deploy an up-
dated container image and transfer the state. Furthermore, using the mechanism
the Virtual PLC can be moved in a cloud-native fashion between nodes, so that
operating systems and container engines can be updated, or hardware can be
replaced. This was previously impossible on-the-fly using embedded controllers.

As a next step, we plan to address several of the approach’s assumptions,
namely testing with other PLC runtimes and using more resource-constrained
and thus less costly hardware. The approach could in principle also support
fail-over scenarios to provide redundancy, which however require a continuous
state transfer. Furthermore, the approach could be extended to optimally select
a target node for the updated PLC runtime or to transfer the internal state in
smaller chunks to be applicable for special control applications with very low
cycle times.
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